Math, asked by 62parneet, 10 months ago

class 11 trignometry
plz plz solve if u know​

Attachments:

Answers

Answered by Anonymous
10

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \:  \: {\sf{ 1.3 + 3.5 + 5.7 + ....... + (2n - 1)(2n + 1) =  \frac{n}{3} (4 {n}^{2} + 6n - 1) }} \\ \\

{\bf{\blue{\underline{Now:}}}}

Take L.H.S,

 \diamond \:  \: {\sf{ \green{ put \: P(n )= 1}}} \\

 ={\sf{ [2(1) - 1][2(1) + 1]}} \\

 ={\sf{ [1][3]}} \\

 ={\sf{ 3}} \\

Now take R.H.S,

 ={\sf{  \frac{1(4 \times {1}^{2}  + 6 \times 1 - 1)}{3} }} \\ \\

 ={\sf{  \frac{1(4   +   6- 1)}{3} }} \\ \\

 ={\sf{  \frac{10 - 1}{3} }} \\ \\

 ={\sf{  \frac{9}{3} }} \\ \\

 ={\sf{  3 }} \\ \\

L.H.S = R.HS

Result is true for n = 1

___________________________________

Assume that the result is true for n = k

  \dagger \:  \: {\sf{ 1.3 + 3.5 + 5.7 + ....... + (2k - 1)(2k + 1) =  \frac{n}{3} (4 {k}^{2} + 6n - 1) ......(1)}} \\ \\

Adding (2k+1) and (2k+3) to both side,

 \dagger \:  \: {\sf{1.3 + 3.5 + 5.7 + ..... + (2k - 1)(2k + 1) + (2k + 1)(2k + 3) =  \frac{n}{2} (4 {n}^{2}  + 6n - 1) + (2k + 1)(2k + 2) }} \\ \\

 : \implies{\sf{  \frac{k(4 {k }^{2}  + 6k - 1) + 3(2k + 1)(2k + 3)}{3} }} \\ \\

 : \implies{\sf{  \frac{k(4 {k }^{2}  + 6k - 1) + 3 \times (4 {k}^{2} + 6k + 2k + 3) }{3} }} \\ \\

 : \implies{\sf{  \frac{k(4 {k }^{2}  + 6k - 1) + 3 \times (4 {k}^{2} + 8k + 3) }{3} }} \\ \\

 : \implies{\sf{  \frac{4 {k}^{3}  + 6 {k}^{2}  - k + 12 {k}^{2}  + 24 k+ 9}{3} }} \\ \\

 : \implies{\sf{  \frac{4 {k}^{3}  + 18 {k}^{2}  - k  + 24k + 9}{3} }} \\ \\

 : \implies{\sf{  \frac{4 {k}^{3}  + 18 {k}^{2}   + 23k + 9}{3} }} \\ \\

 : \implies{\sf{  \frac{(k + 1)(4 {k}^{2}  + 14 {k}   + 9)}{3} }} \\ \\

 : \implies{\sf{  \frac{(k + 1)(4 {(k + 1)}^{2}  + 6({k + 1}  )  - 1)}{3} }} \\ \\

P (k+1) is true.

  • Hence by principle of Mathematical induction p(n) is true for all n€N
Answered by Anonymous
5

Let ,

 \star \sf \: P(n) = 1.3 + 3.5 + 5.7 + ... + (2n - 1)(2n + 1) =  \frac{n(4 {n}^{2}  + 6n - 1)}{3} -  -  - (i)

For n = 1 ,

LHS of eq (i) is

\sf  \hookrightarrow (2 \times 1 - 1)(2 \times 1+ 1) \\  \\ \sf  \hookrightarrow 1 \times 3 \\  \\ \sf  \hookrightarrow 3

and

RHS of eq (i) is

 \sf  \hookrightarrow \frac{1(4 {(1)}^{2}  + 6(1)- 1)}{3} \\  \\  \sf  \hookrightarrow \frac{4 + 6 - 1}{3}  \\  \\  \sf  \hookrightarrow  \frac{9}{3}  \\  \\ \sf  \hookrightarrow 3

 \sf \therefore \underline{LHS = RHS}

Therefore , P(1) is true

Assume P(k) is true , then

\star \: \sf P(k) = 1.3 + 3.5 + 5.7 + ... + (2k - 1)(2k + 1) =  \frac{k(4 {k}^{2}  + 6k - 1)}{3}

For n = k + 1

\sf  \hookrightarrow P(k + 1) = 1.3 + 3.5 + 5.7 + ... + (2k - 1)(2k + 1)  +  \bigg(2(k + 1) - 1 \bigg) \bigg(2(k + 1) + 1 \bigg) =  \frac{(k + 1) \bigg(4 {(k + 1)}^{2}  + 6(k + 1) - 1 \bigg)}{3}  \\  \\ \sf  \hookrightarrow P(k + 1) = P(k) + (2k + 1 )(2 k +3) = \frac{(k + 1) \bigg( 4( {k}^{2} + 1 + 2k ) + 6k + 6 - 1  \bigg)}{3} \\  \\\sf  \hookrightarrow P(k + 1) = P(k) + (2 k+ 1 )(2k +3) =  \frac{(k + 1)(4 {k}^{2} + 4 + 8k + 6k + 5) }{3} \\  \\  \sf  \hookrightarrow P(k + 1) = P(k) + (2k + 1)(2 k + 3) =  \frac{(k + 1) (4 {k}^{2}  + 14k + 9)}{3} \\  \\ \sf  \hookrightarrow  P(k + 1) = P(k) + (2k + 1)(2 k + 3) = \frac{4 {k}^{3} + 14 {k}^{2} + 9k + 4 {k}^{2}  + 4 {k}^{2}  + 14k + 9  }{3}  \\  \\ \sf  \hookrightarrow P(k + 1) = P(k)  + (2k + 1)(2 k + 3) =  \frac{4 {k}^{3} + 18 {k}^{2}   + 23k + 9}{3}

LHS :

\sf  \hookrightarrow P(k + 1) = P(k) + (2k + 1)(2 k + 3) \\  \\ \sf  \hookrightarrow P(k + 1) =\frac{k(4 {k}^{2}  + 6k - 1)}{3} + (2k + 1)(2k + 3) \\  \\\sf  \hookrightarrow  P(k + 1)  =  \frac{4 {k}^{2} + 6 {k}^{2} - k + 12 {k}^{2}  + 18k + 6k + 9  }{3}  \\  \\ \sf  \hookrightarrow P(k + 1)  =  \frac{4 {k}^{3}  + 18 {k}^{2}  + 23k + 9}{3}

 \sf \therefore \underline{LHS = RHS}

Therefore , P(n) is true for all natural number

Similar questions