Math, asked by kaamranraj2900, 3 months ago

class 11th
find the limit of lim_x →3 x^4 - 81/2x^2 - 5x - 3

please answer ​

Attachments:

Answers

Answered by BrainlyTwinklingstar
17

Answer

 \displaystyle \sf\lim_{x \to 3} \dfrac{x^4 - 81}{2x^2 - 5x -3} = \left. \dfrac{x^4 - 81}{2x^2 - 5x - 3} \right |_{x = 3}

\dfrac{(3)^4 - 81}{2(9)^2 - 5(3) - 3)} = \dfrac{0}{0}

therefore, the function,

 \sf f(x) =  \dfrac{ {x}^{4} - 81 }{2 {x}^{2} - 5x - 3 }

 \sf f(x) =  \dfrac{ ({x}^{2} - 9) - ( {x}^{2}  - 9) }{2 {x}^{2} - 6x  + x- 3 }

\sf f(x) =  \dfrac{ (x + 3)(x - 3)  ( {x}^{2}  - 9) }{2x(x - 3) + (x- 3 )}

\sf f(x) =  \dfrac{ (x + 3)(x - 3)  ( {x}^{2}  - 9) }{(2x + 1) (x- 3 )}

\sf f(x) =  \dfrac{ (x + 3) ( {x}^{2}  - 9) }{(2x + 1)}

 \displaystyle\sf\lim_{x \to 3} f(x) = \left.  \dfrac{ (x + 3) ( {x}^{2}  - 9) }{2x(x - 3) }   \right |_{x = 3}

 \displaystyle\sf\lim_{x \to 3} f(x) =  \dfrac{(3 + 3) \times (9 + 9) }{2(3) + 1 }

 \displaystyle\sf\lim_{x \to 3} f(x) =  \dfrac{6 \times 18}{7}

 \underline {\boxed {\displaystyle\sf\lim_{x \to 3} f(x) =  \dfrac{108}{7} }}

Answered by mathdude500
2

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \rm \:  \boxed{  \large\red{ {x}^{2} -  {y}^{2}   = (x + y)(x - y)}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \ \: :  ⟼ \tt \:\lim_{x\to3} \: \dfrac{ {x}^{4} - 81 }{ {2x}^{2}  - 5x - 3}

☆ On substituting directly x = 3, we get indeterminant form

☆ So, here we use the concept of factorization.

\tt\implies \:\tt \:\lim_{x\to3}\dfrac{ {( {x}^{2}) }^{2}  -  {9}^{2} }{2 {x}^{2} - 6x + x - 3 }

\tt\implies \:\tt \:\lim_{x\to3}\dfrac{ ({x}^{2}  - 9)( {x}^{2}  + 9)}{2x(x - 3) + 1(x - 3)}

\tt\implies \:\tt \:\lim_{x\to3}\dfrac{ {x}^{2} -  {3}^{2}  }{(x - 3)(2x + 1)}  \times \tt \:\lim_{x\to3}( {x}^{2}  + 9)

\tt\implies \:18 \times \tt \:\lim_{x\to3}\dfrac{(x - 3)(x + 3)}{(x - 3)}  \times \tt \:\lim_{x\to3}\dfrac{1}{2x + 1}

\tt\implies \:18   \times \dfrac{1}{7}  \times \tt \:\lim_{x\to3}(x + 3)

\tt\implies \:\dfrac{18}{7}  \times 6

\tt\implies \:\dfrac{108}{7}

Similar questions