Math, asked by sanidhybb, 4 months ago

Class 11th Limits CBSE ​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

 \lim_{x \rarr0} \frac{ \sqrt{ {x}^{2} + 16 }  - 4}{ \sqrt{ {x}^{2}  + 9}  - 3}  \\

 = \lim_{x \rarr0} \frac{(  \sqrt{ {x}^{2} + 16 }   - 4)(  \sqrt{ {x}^{2}  + 16} + 4) ( \sqrt{ {x}^{2} + 9 }  + 3)}{( \sqrt{ {x}^{2}  + 9}  - 3)( \sqrt{ {x}^{2}  + 9}  + 3)( \sqrt{ {x}^{2} + 16 } + 4) }  \\

\lim_{x \rarr0} \frac{ ({x}^{2} + 16 - 16)( \sqrt{ {x}^{2}  + 9} +  3) }{( {x}^{2} + 9 - 9)( \sqrt{ {x}^{2}  + 16}   + 4)}  \\

\lim_{x \rarr0} \frac{ {x}^{2}( \sqrt{ {x}^{2}  + 9}   + 3)}{ {x}^{2} ( \sqrt{ {x}^{2}  + 16}  + 4)}  \\

\lim_{x \rarr0} \frac{ \sqrt{ {x}^{2}  + 9}  + 3}{ \sqrt{ {x}^{2}  + 16}  + 4}  \\

 =  \frac{6}{8}  =  \frac{3}{4}  \\

Similar questions