Math, asked by shivam2000, 1 year ago

Class 11th
Prove that

cos²A + cos²(A+2π/3) + cos²(A - 2π/3) = 3/2

Answers

Answered by rational
160
Recall the identity x^2+y^2=(x+y)^2-2xy

\cos^2A+\cos^2(A+2\pi/3)+\cos^2(A-2\pi/3)

=\cos^2A+(\cos(A+2\pi/3)+\cos(A-2\pi/3))^2-2\cos(A+2\pi/3)\cos(A-2\pi/3)

=\cos^2A+(2\cos{A}*\cos(2\pi/3))^2-2(\cos^2A-\sin^2(2\pi/3))

=\cos^2A+(2\cos{A}*\frac{1}{2})^2-2(\cos^2A-\left(\frac{\sqrt{3}}{2}\right)^2)

=\cos^2A+\cos^2A-2(\cos^2A-\left(\frac{\sqrt{3}}{2}\right)^2)

=2\cos^2A-2\cos^2A+2*\frac{3}{4}

=\frac{3}{2}
Answered by Anonymous
7

Answer:

this is the answer...........

Attachments:
Similar questions