Math, asked by prashantmallick, 11 months ago

class 12 application of derivative to find the tangent point on a curve​

Attachments:

Answers

Answered by shadowsabers03
13

The straight line is y=k.

It's slope is,

\longrightarrow m=\dfrac{dy}{dx}

\longrightarrow m=\dfrac{d}{dx}(k)

Since k is a constant,

\longrightarrow m=0\quad\quad\dots(1)

The curve is y=x^2-3x+2.

Slope of tangent to this curve is,

\longrightarrow m=\dfrac{dy}{dx}

\longrightarrow m=\dfrac{d}{dx}\big(x^2-3x+2\big)

\longrightarrow m=2x-3\quad\quad\dots(2)

Equating (1) and (2),

\longrightarrow 2x-3=0

\longrightarrow x=\dfrac{3}{2}

And,

\longrightarrow y=x^2-3x+2

\longrightarrow y=(x-1)(x-2)

\longrightarrow y=\left(\dfrac{3}{2}-1\right)\left(\dfrac{3}{2}-2\right)

\longrightarrow y=-\dfrac{1}{4}

Hence the coordinates of the point is,

\longrightarrow\underline{\underline{(x,\ y)=\left(\dfrac{3}{2},\ -\dfrac{1}{4}\right)}}

Similar questions