Math, asked by Anonymous, 8 months ago

Class _12 Differentiation of implicit functions​

Attachments:

Answers

Answered by Anonymous
68

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

 log( \sqrt{ {x}^{2}  +  {y}^{2} } )  =   { \tan}^{ (- 1)}  \frac{y}{x}

We have to find ...

 \implies \frac{dy}{dx}

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\implies log( \sqrt{ {x}^{2} + {y}^{2} } ) = { \tan}^{ (- 1)} \frac{y}{x} \\ \implies \frac{1}{ \sqrt{ {x}^{2} +  {y}^{2}  } }  \times  \frac{1}{2}  \times  \frac{2x + 2y (\frac{dy}{dx}) }{ \sqrt{ {x}^{2} +  {y}^{2}  } }  =  \frac{1}{1 + ( { \frac{y}{x} })^{2} }  \times  \frac{x \frac{dy}{dx} - y \times 1 }{ {x}^{2} }  \\ \implies \frac{1}{ ({x}^{2}  +  {y}^{2}) }  \times x + y \frac{dy}{dx}  =  \frac{ {x}^{2} }{( {x}^{2} +  {y}^{2}  )}  \times  \frac{x \times  \frac{dy}{dx}  - y}{ {x}^{2} }  \\ \implies x + y \frac{dy}{dx}  =  x\frac{dy}{dx}  - y \\ \implies y \frac{dy}{dx}  - x \frac{dy}{dx}  =  - y - x \\ \implies \frac{dy}{dx}  =   - \frac{y + x}{y - x}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Large\red{ THANKS \: FOR \: YOUR}

\bf\Large\red{ QUESTION \: HOPE \: IT  }

\bf\Large\red{ HELPS  }

\Large\mathcal\green{GOOD\: MORNING } ❤️

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions