Math, asked by Anonymous, 10 months ago

Class _12 Differentiation of implicit functions.

If xy= tan ( xy )
show that ,

dy/dx = -y/x

Answers

Answered by Anonymous
27

\huge {\mathbb{\red{Question!!}}}

xy =  \tan(xy)

██████████████████████████

\huge {\mathbb ♡{\orange{solu}\green{ti}\pink{on}\blue{!}}}♡

xy =  \tan(xy) \\ \implies y \times 1 +  \frac{dy}{dx}  \times x =  { \sec }^{2} (xy){x \times  \frac{dy}{dx}  + y \times 1} \\ \implies y + x \frac{dy}{dx}  = y {sec}^{2} (xy) + x \frac{dy}{dx}  { \sec}^{2} (xy) \\ \implies x \frac{dy}{dx}  - x \frac{dy}{dx}   { \sec }^{2} (xy) = y { \sec }^{2} (xy) - y \\ \implies x \frac{dy}{dx} (1 -  { \sec }^{2} (xy)) = y( { \sec}^{2} (xy) - 1) \\ \implies x \frac{dy}{dx}  =  - y \times  \frac{1 -   { \sec }^{2} (xy) }{1 -  { \sec}^{2} (xy)}  \\ \implies \frac{dy}{dx}  =   - \frac{y}{x}

\huge {\underline{\pink{Thanks:)}}}

Answered by sprao53413
3

Answer:

Please see the attachment

Attachments:
Similar questions