Math, asked by Vader, 2 months ago

class 12 integration pls help​

Attachments:

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{-1}^1\tt log\bigg(\dfrac{2 + 3x}{2 - 3x} \bigg)dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_{-1}^1\tt log\bigg(\dfrac{2 + 3x}{2 - 3x} \bigg)dx

Let further assume that

\rm :\longmapsto\:f(x) = log\bigg(\dfrac{2 + 3x}{2 - 3x} \bigg)

Change x to - x

\rm :\longmapsto\:f( - x) = log\bigg(\dfrac{2 + 3( - x)}{2 - 3( - x)} \bigg)

\rm :\longmapsto\:f( - x) = log\bigg(\dfrac{2 - 3x}{2 + 3x} \bigg)

\rm :\longmapsto\:f( - x) = log\bigg(\dfrac{2  + 3x}{2  - 3x} \bigg) ^{ - 1}

\rm :\longmapsto\:f( - x) =  -  \: log\bigg(\dfrac{2  + 3x}{2  - 3x} \bigg)

\rm :\longmapsto\:f( - x) =  -  f(x)

We know,

By properties of definite integrals,

\rm :\longmapsto\:\displaystyle\int_{-a}^a\tt f(x) \: dx = 0 \:  \: if \: f( - x) =  - f(x)

Thus,

\rm :\longmapsto\:\displaystyle\int_{-1}^1\tt log\bigg(\dfrac{2 + 3x}{2 - 3x} \bigg)dx = 0

Similar questions