Math, asked by Udayeswari, 3 days ago

class 12 maths.. Inverse trigonometrypls send this​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

Solve for x :-

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}2x = \dfrac{\pi}{3}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}2x = \dfrac{\pi}{3}

\rm :\longmapsto\: {sin}^{ - 1}2x = \dfrac{\pi}{3} - {sin}^{ - 1}x

\rm :\longmapsto\: 2x = sin \bigg( \dfrac{\pi}{3} - {sin}^{ - 1}x \bigg)

\rm :\longmapsto\:2x = sin\dfrac{\pi}{3}cos( {sin}^{ - 1}x) - sin( {sin}^{ - 1}x) \: cos\dfrac{\pi}{3}

\green{\boxed{ \bf \because \: sin(x + y) = sinx \: cosy \:  +  \: cosx \: siny}}

\rm :\longmapsto\:2x = \dfrac{ \sqrt{3} }{2} \: cos( {cos}^{ - 1} \sqrt{1 -  {x}^{2} } ) - x\: \times  \dfrac{1}{2}

\green{\boxed{ \bf \because \: {sin}^{ - }x ={cos}^{-1} \sqrt{1-{x}^{2}}}}

\rm :\longmapsto\:2x  +  \dfrac{x}{2} = \dfrac{ \sqrt{3} }{2} \:\sqrt{1 -  {x}^{2} } )

\rm :\longmapsto\:\dfrac{4x + x}{2} = \dfrac{ \sqrt{3} }{2} \:\sqrt{1 -  {x}^{2} } )

\rm :\longmapsto\:\dfrac{5x}{2} = \dfrac{ \sqrt{3} }{2} \:\sqrt{1 -  {x}^{2} } )

\rm :\longmapsto\:5x =  \sqrt{3} \times  \sqrt{1 -  {x}^{2} }

On squaring both sides, we get

\rm :\longmapsto\: {25x}^{2} = 3(1 -  {x}^{2})

\rm :\longmapsto\: {25x}^{2} = 3 -  3{x}^{2}

\rm :\longmapsto\: {25x}^{2}  + 3{x}^{2}  = 3

\rm :\longmapsto\: {28x}^{2} = 3

\rm :\longmapsto\: {x}^{2} = \dfrac{3}{28}

\bf\implies \:x =  \:  \pm \: \dfrac{ \sqrt{3} }{2 \sqrt{7} }

Verification :-

Case :- 1

\rm :\longmapsto\:When \: x = \dfrac{ \sqrt{3} }{2 \sqrt{7} }

Consider, LHS

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}2x

\rm  \: = \:  \:   {sin}^{ - 1} \dfrac{ \sqrt{3} }{2 \sqrt{7} }  +  {sin}^{ - 1}\dfrac{ \sqrt{3} }{\sqrt{7} }

\rm  \: = \:  \:   {tan}^{ - 1} \dfrac{ \sqrt{3} }{5}  +  {tan}^{ - 1}\dfrac{ \sqrt{3} }{2 }

\rm  \: = \:  \:   {tan}^{ - 1} \bigg(\dfrac{\dfrac{ \sqrt{3} }{5}  + \dfrac{ \sqrt{3} }{2} }{1 - \dfrac{ \sqrt{3} }{5}  \times \dfrac{ \sqrt{3} }{2} } \bigg)

\rm  \: = \:  \:   {tan}^{ - 1} \bigg(\dfrac{7 \sqrt{3}  }{7 } \bigg)

\rm  \: = \:  \:   {tan}^{ - 1}( \sqrt{3)}

\rm  \: = \:  \:   \dfrac{\pi}{3}

\bf\implies \: LHS = RHS

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{  \quad\bf  \: x = \dfrac{ \sqrt{3} }{2 \sqrt{7} } \quad  \: }}

Case :- 2

\rm :\longmapsto\:When \: x = -  \:  \dfrac{ \sqrt{3} }{2 \sqrt{7} }

Consider LHS

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}2x

\rm  \: = \:  \:   {sin}^{ - 1} \dfrac{ -  \sqrt{3} }{2 \sqrt{7} }  +  {sin}^{ - 1}\dfrac{ -  \sqrt{3} }{\sqrt{7} }

\rm  \: = \:  \:   -  {sin}^{ - 1} \dfrac{ \sqrt{3} }{2 \sqrt{7} }  -   {sin}^{ - 1}\dfrac{ \sqrt{3} }{\sqrt{7} }

\rm  \: = \:  \:   -  {tan}^{ - 1} \dfrac{ \sqrt{3} }{5}   -  {tan}^{ - 1}\dfrac{ \sqrt{3} }{2 }

\rm  \: = \:  \:   -  {tan}^{ - 1} \bigg(\dfrac{\dfrac{ \sqrt{3} }{5}  + \dfrac{ \sqrt{3} }{2} }{1 - \dfrac{ \sqrt{3} }{5}  \times \dfrac{ \sqrt{3} }{2} } \bigg)

\rm  \: = \:  \:  -   {tan}^{ - 1} \bigg(\dfrac{7 \sqrt{3}  }{7 } \bigg)

\rm  \: = \:  \:   -  {tan}^{ - 1}( \sqrt{3)}

\rm  \: = \:  \:  -  \:   \dfrac{\pi}{3}

\bf\implies \: LHS  \: \ne \:  RHS

So Solution of

\bf :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}2x = \dfrac{\pi}{3} \:  \: is \:  \: x \:  =  \:\dfrac{ \sqrt{3} }{2 \sqrt{7} }

Similar questions