Math, asked by srikar03, 5 months ago

class 12...
no irrelevant stuff.. no spamming
no guessing
need answer + explanation.....
need help....​

Attachments:

Answers

Answered by Anonymous
16

\huge\bf\red{\underline{\underline{ANSWER:-}}}

For a Cubic equation -

Given :-

\sf{kx^{3} - 26x^{2} + 52x - 24 = 0}

\sf{roots \: of \: above \: cubic \: eq. \: are \: in \: G.P. }

To Find :-

\sf{what's \: the \: value \: of \: k .}

We know :-

Form of a Cubic equation -

\sf{ax^{3} + bx^{2} + cx + d = 0}

On Comparing the giving Cubic equation from

this standard form of cubic eq. -

\sf{a = k}

\sf{b = -26}

\sf{c = 52}

\sf{d = -24}

For a Cubic equation -

\sf{\alpha + \beta + \gamma = -\dfrac{b}{a}}

\sf{\alpha \beta + \beta \gamma + \gamma \alpha =\dfrac{c}{a}}

\sf{\alpha \beta \gamma = -\dfrac{d}{a}}

Solution :-

\sf{Roots \: of \: the \: Cubic \: eq. \: (\alpha \: , \: \beta \: , \: \gamma) \: , \: are \: in \: G.P. -}

So ,

\sf{\alpha = a}

\sf{\beta = ar}

\sf{\gamma = ar^{2}}

Now ,

\sf{(a)(ar)(ar^{2}) = -\dfrac{-24}{k}}

\sf{(a^{3}r^{3}) =\dfrac{24}{k}}

\sf{ar =\sqrt[3]{\dfrac{24}{k}} ---(1)}

then ,

\sf{a + ar + ar^{2} =-\dfrac{-26}{k}}

\sf{a(1 + r + r^{2}) =\dfrac{26}{k}}

\sf{(1 + r + r^{2}) =\dfrac{26}{ka} --(2)}

Now ,

\sf{a(ar) + ar(ar^{2}) + ar^{2}(a) =\dfrac{52}{k}}

\sf{a^{2}r + a^{2}r^{3} + a^{2}r^{2} =\dfrac{52}{k}}

\sf{a^{2}r(1 + r + r^{2}) =\dfrac{26}{k}\times 2}

From eq.(2) -

\sf{ar[a(1 + r + r^{2})] =\dfrac{26}{k}\times 2}

\sf{(ar)(\dfrac{26}{k}) =\dfrac{26}{k}\times 2}

\sf{ar = 2}

\sf{\sqrt[3]{\dfrac{24}{k}}= 2}

Doing Cube both side -

\sf{\dfrac{24}{k} = 2^{3}}

\sf{\dfrac{24}{k} = 8}

\sf{k =\dfrac{24}{8}}

\sf{k = 3}

Similar questions