Math, asked by diwanamrmznu, 13 hours ago

CLass 12th


 \implies  \pink{\int \:  x \sin {}^{ - 1}  x }\\   \\


Don't spam!!​

Answers

Answered by ItzzTwinklingStar
49

Given:

int xsin-¹ x

\displaystyle \: M = \int x\sin^{-1}(x)dx

Solution:

\displaystyle \: M = \int x\sin^{-1}(x)dx\\\\

Integrating by parts

{{\displaystyle: \implies \sin^{-1}(x)\int x \cdot dx}}\\\\

{{\displaystyle :  \implies \int\Bigg[\frac{d}{dx}{\sin^{-1} {x}}\int x dx\Bigg]dx}}\\\\

{\displaystyle:\implies\frac{x^2\sin^{-1}(x)}{2}\frac{1}{2}\int\Bigg(\frac{x^2}{\sqrt{1 x^2}}\Bigg)dx \: \:  \:  \:  \:  \:  - (1)}\\\\

Now we have to solve

:\implies \: l=\displaystyle\int\Bigg(\frac{x^2}{\sqrt{1x^2}}\Bigg)dx\\\\

Substitution

 \displaystyle \: 1-x^2=t^2

: \implies \displaystyle \: -x\cdot dx-t\cdot dt \\\\

:\implies  \displaystyle \: dx=-\frac{t\cdot dt}{x}\\  \\

:\implies l=\displaystyle -\int\frac{x^2} {t}\cdot\frac{t\cdot dt}{x}\\\\

: \implies -\displaystyle x\cdot dt\\\\

: \implies \displaystyle \sqrt{1-t^2}\cdot dt\\\\

{\displaystyle {: \implies-\Bigg[\frac{t}{2}\sqrt{1 t^2} + \frac{1}{2}\sin^{-1}{(t)}\Bigg]}}\\\\

Substituting

 \displaystyle \: let^2=1-x^2\\\\

{\displaystyle {:\implies-\Bigg[\frac{\sqrt{1-x^2}} {2}x+\frac{1}{2}\sin^{-1}{(\sqrt{1-x^2}}}\Bigg]}\\\\

Putting I in equation (1)

:\implies\displaystyle \int x\sin^{-1}(x)dx=\\\\

{ \displaystyle{:\implies \frac{1}{2} \Bigg[\frac{\sqrt{1-x^2}}{2}x+}\frac{1}{2}\sin^{-1}{(\sqrt{1-x^2})}\Bigg]  + }{\displaystyle\frac{x^2\sin^{-1} (x)}{2}+}constant\\\\

Answered by rk500raghvendra
12

\huge\bold{\color{aqua}{Solution :-}}

 \quad\bold{\int \: x \sin {}^{ - 1} x }

 \bold{=sin^{-1}x.\frac{x²}{2}-\int \:\frac{1}{\sqrt{1-x²}}.\frac{x²}{2}\:dx}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{1}{2}\int \:\frac{-x²}{\sqrt{1-x²}}\:dx}

\bold{\purple{\text{On adding and subtracting 1}}}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{1}{2}\int \:\frac{-x²+1-1}{\sqrt{1-x²}}\:dx}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{1}{2}\int \:\frac{1-x²}{\sqrt{1-x²}}dx\:-\frac{1}{2}\int \:\frac{1}{\sqrt{1-x²}}dx}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{1}{2}\int \:\frac{\red{\cancel{\blue{1-x²}}}^{\green{\:\sqrt{1-x²}}}}{\red{\cancel{\blue{\sqrt{1-x²}}}}}dx\:-\frac{1}{2}sin^{-1}x}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{1}{2}\int\sqrt{1-x²}dx\:-\frac{1}{2}sin^{-1}x}

 \small\bold{=\frac{x²}{2}.sin^{-1}x+\frac{1}{2}\bigg(\frac{x}{2}\sqrt{1-x²}+\frac{1}{2}sin^{-1}x\bigg)-\frac{1}{2}sin^{-1}x+C}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+\frac{1}{4}sin^{-1}x-\frac{1}{2}sin^{-1}x+C}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+\bigg(\frac{1}{4}-\frac{1}{2}\bigg)sin^{-1}x+C}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+\frac{1}{4}sin^{-1}x-\frac{1}{2}sin^{-1}x+C}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+\bigg(\frac{1-2}{4}\bigg)sin^{-1}x+C}

 \bold{=\frac{x²}{2}.sin^{-1}x+\frac{x}{4}\sqrt{1-x²}-\frac{1}{4}sin^{-1}x+C}

 \bold{=\frac{x²}{2}.sin^{-1}x-\frac{1}{4}sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+C}

 \bold{=\bigg(\frac{x²}{2}-\frac{1}{4}\bigg)sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+C}

 \bold{=\green{\boxed{\pink{\bigg(\frac{2x²-1}{4}\bigg)sin^{-1}x+\frac{x}{4}\sqrt{1-x²}+C}}}}

Similar questions