Math, asked by chaksharsai, 3 months ago

Class 9 ,Algebra ,Expansions​

Attachments:

Answers

Answered by Anonymous
20

GIVEN :-

(x +  \dfrac{1}{x} ) {}^{2}  = 3

TO FIND :-

x {}^{3}  +  \dfrac{1}{x {}^{3} }  =

SOLUTION:-

We know ,

(x +  \dfrac{1}{x} ) {}^{2}  = 3

Then,

x +  \dfrac{1}{x}  =  \sqrt{3}

We shall do cubing on both sides

(x +  \dfrac{1}{x} ) {}^{3}  =  (\sqrt{3} ) {}^{3}

(a + b)³ = a³ + b³ + 3ab(a + b)

(x +  \dfrac{1}{x} ) {}^{3}  = x {}^{3}  +  \dfrac{1}{x {}^{3} }  + 3 \times x \times  \dfrac{1}{x}  (x +  \dfrac{1}{x} )

(x  +  \dfrac{1}{x} )^3= x {}^{3} +  \dfrac{1}{x {}^{3} }   + 3(x +  \dfrac{1}{x} )

( \sqrt{3} ) {}^{3}  = x {}^{3}  +  \dfrac{1}{x {}^{3} }  + 3 \sqrt{3}

3 \sqrt{3}  = x {}^{3}  +  \dfrac{1}{x {}^{3} }  + 3 \sqrt{3}

x {}^{3}  +  \dfrac{1}{x {}^{3} }  = 0

KNOW MORE :-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions