Math, asked by adankhan082, 4 months ago

class 9
chapter 2
please tell me answer​

Attachments:

Answers

Answered by Anonymous
45

Question :-

 \displaystyle\rm\Bigg({\frac{x^{a^2}}{x^{b^2}} }\Bigg)^{\frac{1}{a + b}}\Bigg({\frac{x^{b^2}}{x^{c^2}} }\Bigg)^{\frac{1}{b+c}}\Bigg({\frac{x^{c^2}}{x^{a^2}} }\Bigg)^{\frac{1}{c+a}}

Answer :-

 \displaystyle\rm\Bigg({\frac{x^{a^2}}{x^{b^2}} }\Bigg)^{\frac{1}{a + b}}\times \Bigg({\frac{x^{b^2}}{x^{c^2}} }\Bigg)^{\frac{1}{b+c}}\times\Bigg({\frac{x^{c^2}}{x^{a^2}} }\Bigg)^{\frac{1}{c+a}}

\displaystyle\rm = (x^{a^2 - b^2})^{\frac{1}{a + b}} \times (x^{b^2 - c^2})^{\frac{1}{b+c}} \times (x^{c^2 - a^2})^{\frac{1}{c+a}}

\displaystyle\rm = (x^{(a+b)(a-b)})^{\frac{1}{a+b}}  \times (x^{(b+c)(b-c)})^{\frac{1}{b+c}}  \times (x^{(c+a)(c-a)})^{\frac{1}{c+a}}

\displaystyle\rm = x^\frac{(\cancel{a+b})(a-b)}{\cancel{a+b}} \times x^\frac{(\cancel{b+c})(b-c)}{\cancel{b+c}} \times x^\frac{(\cancel{c+a)}(c-a)}{\cancel{c+a}}

\displaystyle\rm = x^{a-b}\times x^{b-c}\times x^{c-a}

\displaystyle\rm = x^({a - b + b - c + c - a})

\displaystyle\rm = x^0

\displaystyle\rm = 1

Answered by ABHINAVsingh56567
1

Answer:

1 is is correct answer hope its help you

Similar questions