Math, asked by Fabisinsane, 3 months ago

Class 9 mathematics (Question in attached image)

Attachments:

Answers

Answered by niral
1

Answer:

Follow  i n s t a g r a m = niral161

Step-by-step explanation:

→ Mark as brainliest answer.

→ Answer in attachment.

Attachments:
Answered by Dinosaurs1842
7

Question:-

\longrightarrow\sf{ \bigg(\dfrac{5^{-1} \times 7^{2} }{5^{2} \times 7^{-4} }\bigg)^{\frac{7}{2} }  \times \bigg(\dfrac{5^{-2} \times 7^{3}}{5^{3} \times 7^{-5} } \bigg)^{\frac{-3}{2} }}

Let's divide the sum into 2 parts in order to understand the sum.

Let the first fraction be part A and the second fraction part B.

Part A :-

Solving part A,

here we have 2 numbers in the numerator and 2 numbers in the denominator respectively.

\implies\sf{ \bigg(\dfrac{5^{-1}}{5^{2} } \times \dfrac{7^{2}}{7^{-4}} \bigg)^{\frac{7}{2} }}

Here by applying the exponent law \longrightarrow \sf{\frac{a^{m}}{a^{n}} = a^{m-n}}

\implies \sf{(5^{-1 - 2} \times 7^{2 - (-4)})^{\frac{7}{2}} }

\implies \sf{(5^{-3} \times 7^{6} )^{\frac{7}{2} }}

Exponent law :- \longrightarrow \sf{a^{-m} = \dfrac{1}{a^{m}}}

\implies \sf{\bigg(\dfrac{7^{6}}{5^{3}} \bigg)^{\frac{7}{2} }}

Part B :-

\implies \sf{ \bigg(\dfrac{5^{-2} \times 7^{3}}{5^{3} \times 7^{-5}} \bigg)^{\frac{-3}{2} }}

Here again we have 2 numbers in the numerator and the denominator. Expressing them as 2 fractions we get :-

\implies \sf{\bigg(\dfrac{5^{-2}}{5^{3}} \times \dfrac{7^{3}}{7^{-5}} \bigg)^{\frac{-3}{2} }}

Applying the exponent law again,

\implies \sf{(5^{-2 - 3} \times 7^{3 - (-5)})^{\frac{-3}{2} }}

\implies\sf{ (5^{-5} \times 7^{8})^{ \frac{-3}{2} }}

Apply exponent law,

\implies \sf{\bigg(\dfrac{7^{8}}{5^{5}} \bigg)^{\frac{-3}{2} }}

Let's now write both the parts as one set.

\longrightarrow \sf{\bigg({\dfrac{7^{6}}{5^{3}} \bigg)^{ \frac{7}{2} }\times \bigg(\dfrac{7^{8}}{5^{5}} \bigg)^{\frac{-3}{2} }}}

Let's multiply the whole powers with the fraction itself.

  • \longrightarrow \sf{(a^{m})^{n} = a^{mn}}

\implies \sf { (7^{6\times\frac{7}{2} } \times 5^{-3 \times \frac{7}{2} }) \times (7^{8 \times \frac{-3}{2} } \times 5^{-5 \times \frac{-3}{2} })}

Cancelling,

\implies \sf{(7^{\not6 \times \frac{7}{\not2} } \times 5^{\frac{-21}{2}} ) \times (7^{\not8 \times \frac{-3}{\not2}} \times 5^{ \times \frac{15}{2} })}

\implies \sf{ (7^{21} \times 5^{\frac{-21}{2} }) \times (7^{-12} \times 5^{\frac{15}{2} })}

Removing the brackets,

\implies 7^{21} \times 5^{\frac{-21}{2} } \times 7^{-12} \times 5^{\frac{15}{2} }

Grouping,

\implies \sf{(7^{21} \times 7^{-12}) \times (5^{\frac{-21}{2} } \times 5^{\frac{15}{2} })}

  • Exponent law :- \longrightarrow \sf{a^{m} \times a^{n} = a^{m+n}}

Therefore,

\implies \sf{(7^{21 + -12}) \times (5^{\frac{-21}{2} + \frac{15}{2} })}

\implies \sf{(7^{9}) \times (5^{\frac{-6}{2} })}

\implies \sf{ (7^{9}) \times (5^{-3})}

\implies \sf{\dfrac{7^{6}}{5^{3}}}

\implies \sf{ \dfrac{117649}{125} }

Important points to note :-

  • aᵇ × aⁿ = aᵇ⁺ⁿ
  • aᵇ ÷ aⁿ = aᵇ⁻ⁿ
  • a⁰ = 1
  • \sf{\sqrt[n]{a} = a^{\frac{1}{n} }}
  • \sf{ a^{-m} = \dfrac{1}{a^{m}}}
  • aᵇ × bᵇ = (ab)ᵇ
  • \sf{a^{m} \div b^{m} = \bigg(\dfrac{a}{b} \bigg)^{m}}
Similar questions