Math, asked by moresaundarya, 11 months ago

class 9
NCERT solutions
chapter 2 polynomials
exercise 2.5
solve all questions and give me answers
please​

Attachments:

Answers

Answered by anshaanyablogger
9

Answer:

This is the screeesshor s

Attachments:
Answered by shradhakapoor2
13

Ex 2.5 Class 9 Maths Question 4.

Expand each of the following, using suitable identities :

(i) (x + 2y + 4z)2

(ii) (2x -y +z)2

(iii) (-2x + 3y + 2z)2

(iv) (3a – 7b -c)2

(v) (-2x + 5y – 3z)2

(vi) (\cfrac { 1 }{ 4 } a-\cfrac { 1 }{ 2 } b+1)2

Solution:

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 16

study rankers class 9 maths Chapter 2 Polynomials 15

Ex 2.5 Class 9 Maths Question 5.

Factorise:

(i) 4x2 + 9y2 + I622 + 12xy – 24yz -16xz

(ii) 2x2+ y2 + 822 – 2 \sqrt { 2 }xy + 4 \sqrt { 2 }yz – 8×2

Solution:

(i) 4x2 +9y2 +16z2 +12xy-24yz-16xz

= (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)

= (2x +3y – 4z)2

(ii) 2x2 + y2 + 8z2 – 2 \sqrt { 2 }xy + 4 \sqrt { 2 }yz-8xz

= (-a \sqrt { 2 }x)2 + (y)2 + (2 \sqrt { 2 }z)2 + (2 – \sqrt { 2 }x) (y) + 2(y) (2 \sqrt { 2 }z) + 2(2 \sqrt { 2 }z)(- \sqrt { 2 }x)

= (- \sqrt { 2 }x + y + 2 \sqrt { 2 }z)2

Ex 2.5 Class 9 Maths Question 6.

Write the following cubes in expanded form :

(i) (2x+1)3

(ii) (2a-3b)3

(iii) (\cfrac { 3 }{ 2 } x+1)3

(iv) (x-\cfrac { 2 }{ 3 } y)3

Solution:

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 13

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 14

Ex 2.5 Class 9 Maths Question 7.

Evaluate the following using suitable identities :

(i) (99)3

(ii) (102)3

(iii) (998)3

Ex 2.5 Class 9 Maths Question 8.

Factorise each of the following:

(i) 8a3 + b3 + 12a26 + 6ab2

(ii) 8a3 – b3 -12a26 + 6a62

(iii) 27 – 125a3 – 135 a + 225 a2 64a3

(iv) 27{ p }^{ 3 }-\cfrac { 1 }{ 216 } -\cfrac { 9 }{ 2 } { p }^{ 2 }+\cfrac { 1 }{ 4 } p

Solution:

Ex 2.5 Class 9 Maths Question 9.

Verify:

(1) x3 + y3 = Or + y)(x2-xy + y2)

(ii) x3-y3 = (x-y)(x2 + xy + y2)

Solution:

(i) We know that,

(x + y)3 = x3 + y3 + 3xy(x + y)

=> x3 + y3 = (x + y)3 -3xy(x + y)

= (x + y)[(x + y)2 -3xy]

= (x + y) [x2 + y2 + 2xy – 3x] = (x + y)[x2 + y2 – xy]

= RHS Hence proved.

(ii) We know that, (x – y)3 = x3 – y3 -3xy(x – y)

=>x3 – y3 = (x – y)3 + 3xy(x – y)

= (x-y)[(x – y)2 +3xy]

= (x -y)[x2 + y2 -2xy + 3xy]

= (x — y)[x2 + y2 + xy]

= RHS Hence proved.

Ex 2.5 Class 9 Maths Question 10.

Factorise each of the following:

(i) 27y3 + 125z3

(ii) 64m3 -343n3 [Hint: See question 9]

Solution:

(i) 27 y3 +125z3 = (3y)3 + (5z)3

= (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]

= (3y + 5z) (9 y2 – 15yz + 25z2)

(ii) 64m3 -343n3 = (4m)3 -(7n)3

= (4m-7n)[(4m)2 + (4m)(7n) + (7n)2]

= (4m – 7n)[16m2 + 28mn + 49n2]

Q 11.

Factorise :

27x3 + y3 + z3 – 9xyz

Solution:

27x3 +y3 +z3 -9xyz = (3x)3 + y3 +z3 -3(3x)(y)(z)

= (3x + y + z)[(3x)2 + y2 + z2 – (3x)y – yz -z(3x)]

= (3x + y + z)(9x2 + y2 + z2 -3xy – yz -3zx)

Ex 2.5 Class 9 Maths Question 12.

Verify that

x3 + y3 +z3 -3xyz = \cfrac { 1 }{ 2 } (x + y + z)[(x -y)2 +(y-z)2 +(z-x)2]

Solution:

We have, x3 + y3 + z3 – 3xyz

= (x + y + z) [x2 + y2 + z2 – xy – yz – zx]

= \frac { 1 }{ 2 } (x + y+ z)[2x2 +2y2 +2z2 -2xy-2yz -2zx]

= \frac { 1 }{ 2 } (x + y + z)[x2 + x2 + y2 + y2 + z2 + z2 -2xy-2yz-2zx]

= \frac { 1 }{ 2 } (x + y + z)[x2 + y2 – 2xy + y2 + z2 -2yz + z2 + x2 – 2zx]

= \frac { 1 }{ 2 } (x + y + z)[(x-y)2 + (y-z)2 +(z-x)2]

Ex 2.5 Class 9 Maths Question 13.

If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.

Solution:

We know that,

x3 +y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz-zx)

= 0(x2 + y2 + z2 – xy- yz-zx) (∵ x + y + z = 0 given)

= 0

=> x3 + y3 + z3 = 3xyz Hence proved.

Q 14.

Without actually calculating the cubes, find the value of each of the following:

(i) (-12)3 + (7)3 + (5)3

(ii) (28)3 + (-15)3 + (-13)3.

Solution:

(i) We know that, x3 + y3 + z3 – 3xyz

= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)

Also, we know that, if

x + y + z = 0

Then, x3 + y3 +z3 = 3 xyz

Given expression is (-12)3 + (7)3 + (5)3.

Here, -12 + 7 + 5=0

∴ (-12)3 + (7)3 + (5)3 = 3 x (-12) x 7 x 5 = -1260

(ii) Given expression is (28)3 + (-15)3 + (-13)3

Here, 28 + (-15) + (-13) = 28 -15-13 = 0

∴ (28)3 + (-15)3 + (-13)3 = 3 x (28) x (-15) x (-13) = 16380

Q 15.

Give possible expressions for the length and the breadth of each of the following rectangles, in which their areas are given :

(i) Area = 25a2 – 35a + 12

(ii) Area = 35y2 + 13y – 12.

Solution:

(i) We have,

Area of rectangle = 25a2 – 35a +12 [by splitting the middle term]

= 25a2 -20a-15a+12

= 5a(5a – 4) – 3(5a – 4)

= (5a-4)(5a-3)

Hence, possible expression for length = (5a – 3) and possible expression for breadth = (5a – 4)

(ii) We have,

Area of rectangle = 35y+ 13y -12

= 35y2 + (28 – 15)y -12

= 35y2 + 28y-15y-12

= (35y2 +28y)-(15y + 12)

= 7y(5y + 4) – 3(5y + 4)

= (7y – 3) (5y + 4)

Q14

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

(i) Volume = 3x2 – 12x

(ii) Volume = 12ky2 + 8ky – 20k.

Solution:

(i) We have,

Volume of cuboid = 3x2 -12x = 3x(x – 4)

So, the possible expressions for the dimensions of the cuboids are 3, x and x – 4.

[∵ volume of cuboid = length x breadth x height]

(ii) We have,

Volume of cuboid = 12ky2 + 8ky – 20k = 12ky2 + (20 -12)ky – 20k [by splitting the middle term]

= 12ky2 + 20 ky – 12ky – 20 k = 4ky(3y + 5) – 4k(3y + 5) = (3y + 5)(4ky – 4k)

= (3y + 5)4k(y -1) = 4k(3y + 5)(y -1)

So, the possible expressions for the dimensions of the cuboid are 4 k, 3y + 5 and y -1..

Similar questions