Math, asked by BrainlyHoney, 2 months ago


Class : 9 ( Ninth )

Topic : Rationalisation of denominator

Solve with process ❤️

Please Help ☹️✅​

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

 \red{\rm :\longmapsto\:x = \dfrac{1}{7 + 4 \sqrt{3} }}

Multiply and Divide by conjugate of denominator, we get

\:  \: \rm  =  \:  \: \dfrac{1}{7 + 4 \sqrt{3} }  \times \dfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

\:  \: \rm  =  \:  \: \dfrac{7 - 4 \sqrt{3} }{ {(7)}^{2} -  {(4 \sqrt{3}) }^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

\:  \: \rm  =  \:  \: \dfrac{7 - 4 \sqrt{3} }{49 - 48}

\:  \: \rm  =  \:  \: 7 - 4 \sqrt{3}

  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\bf\implies \:x = 7 - 4 \sqrt{3}}}

Also, Given that

 \green{\rm :\longmapsto\:y = \dfrac{1}{7  -  4 \sqrt{3} }}

Multiply and Divide by conjugate of denominator, we get

\:  \: \rm  =  \:  \: \dfrac{1}{7  -  4 \sqrt{3} }  \times \dfrac{7  +  4 \sqrt{3} }{7  +  4 \sqrt{3} }

\:  \: \rm  =  \:  \: \dfrac{7  +  4 \sqrt{3} }{ {(7)}^{2}   -    {(4 \sqrt{3}) }^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

\:  \: \rm  =  \:  \: \dfrac{7  +  4 \sqrt{3} }{49 - 48}

\:  \: \rm  =  \:  \: 7  +  4 \sqrt{3}

  \:  \:  \:  \:  \:  \:  \: \green{ \boxed{\bf\implies \:y = 7  +  4 \sqrt{3}}}

Consider,

 \red{\rm :\longmapsto\:xy}

\:  \: \rm  =  \:  \: (7 + 4 \sqrt{3})(7 - 4 \sqrt{3})

\:  \: \rm  =  \:  \:  {(7)}^{2} -  {(4 \sqrt{3}) }^{2}

\:  \: \rm  =  \:  \: 49 - 48

\:  \: \rm  =  \:  \: 1

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\bf\implies \:xy = 1}}

Consider,

 \blue{\bf :\longmapsto\:x + y}

\:  \: \rm  =  \:  \: 7 + 4 \sqrt{3} + 7 - 4 \sqrt{3}

\:  \: \rm  =  \:  \: 14

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \blue{ \boxed{\bf\implies \:x + y = 14}}

Now, we have to find the value of

 \green{\bf :\longmapsto\: {x}^{3}  +  {y}^{3} }

\:  \: \rm  =  \:  \:  {(x + y)}^{3} - 3xy(x + y)

\:  \: \rm  =  \:  \:  {14}^{3} - 3 \times 1 \times 14

[ using above values of x + y = 14 and xy = 1 ]

\:  \: \rm  =  \:  \: 2744 - 42

\:  \: \rm  =  \:  \: 2702

  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ \boxed{\bf\implies \: {x}^{3} +  {y}^{3}   = 2704}}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Answered by muskanshi536
2

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given that,

 \red{\rm :\longmapsto\:x = \dfrac{1}{7 + 4 \sqrt{3} }}

Multiply and Divide by conjugate of denominator, we get

\:  \: \rm  =  \:  \: \dfrac{1}{7 + 4 \sqrt{3} }  \times \dfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

\:  \: \rm  =  \:  \: \dfrac{7 - 4 \sqrt{3} }{ {(7)}^{2} -  {(4 \sqrt{3}) }^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

\:  \: \rm  =  \:  \: \dfrac{7 - 4 \sqrt{3} }{49 - 48}

\:  \: \rm  =  \:  \: 7 - 4 \sqrt{3}

  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\bf\implies \:x = 7 - 4 \sqrt{3}}}

Also, Given that

 \green{\rm :\longmapsto\:y = \dfrac{1}{7  -  4 \sqrt{3} }}

Multiply and Divide by conjugate of denominator, we get

\:  \: \rm  =  \:  \: \dfrac{1}{7  -  4 \sqrt{3} }  \times \dfrac{7  +  4 \sqrt{3} }{7  +  4 \sqrt{3} }

\:  \: \rm  =  \:  \: \dfrac{7  +  4 \sqrt{3} }{ {(7)}^{2}   -    {(4 \sqrt{3}) }^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

\:  \: \rm  =  \:  \: \dfrac{7  +  4 \sqrt{3} }{49 - 48}

\:  \: \rm  =  \:  \: 7  +  4 \sqrt{3}

  \:  \:  \:  \:  \:  \:  \: \green{ \boxed{\bf\implies \:y = 7  +  4 \sqrt{3}}}

Consider,

 \red{\rm :\longmapsto\:xy}

\:  \: \rm  =  \:  \: (7 + 4 \sqrt{3})(7 - 4 \sqrt{3})

\:  \: \rm  =  \:  \:  {(7)}^{2} -  {(4 \sqrt{3}) }^{2}

\:  \: \rm  =  \:  \: 49 - 48

\:  \: \rm  =  \:  \: 1

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\bf\implies \:xy = 1}}

Consider,

 \blue{\bf :\longmapsto\:x + y}

\:  \: \rm  =  \:  \: 7 + 4 \sqrt{3} + 7 - 4 \sqrt{3}

\:  \: \rm  =  \:  \: 14

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \blue{ \boxed{\bf\implies \:x + y = 14}}

Now, we have to find the value of

 \green{\bf :\longmapsto\: {x}^{3}  +  {y}^{3} }

\:  \: \rm  =  \:  \:  {(x + y)}^{3} - 3xy(x + y)

\:  \: \rm  =  \:  \:  {14}^{3} - 3 \times 1 \times 14

[ using above values of x + y = 14 and xy = 1 ]

\:  \: \rm  =  \:  \: 2744 - 42

\:  \: \rm  =  \:  \: 2702

  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ \boxed{\bf\implies \: {x}^{3} +  {y}^{3}   = 2704}}

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions