Math, asked by RoshanNand, 11 months ago

Class 9 Please

 \: if \:   \: \dfrac{ {9}^{n}  \times  {3}^{2}  \times  {3}^{n} -  {27}^{n}  }{{3}^{3m} \times  {2}^{3}  }  =  \dfrac{1}{27}
Prove that m - n = 1

It is from RD Sharma please guys... ​

Answers

Answered by StarrySoul
91

Solution :

We have,

 \star \:  \sf \:  \dfrac{ {9}^{n }  \times  {3}^{2}  \times  {3}^{n} -  {27}^{n}  }{ {3}^{3m} \times  {2}^{3}  }  =  \dfrac{1}{27}

 \longrightarrow \sf \:  \dfrac{ {3}^{2n}  \times  {3}^{2} \times  {3}^{n}   -  {3}^{3n} }{ {3}^{3m} \times  {2}^{3}  }   = \dfrac{1}{27}

 \longrightarrow \sf \:  \dfrac{ {3}^{2n + 2 + n} -  {3}^{3n}  }{{3}^{3m}  \times  {2}^{3} }  =  \dfrac{1}{ {3}^{3} }

 \longrightarrow \sf \:   \dfrac{ {3}^{3n + 2}  -  {3}^{3n} }{ {3}^{3m} \times  {2}^{3}  }  =  \dfrac{1}{ {3}^{3} }

 \longrightarrow \sf  \dfrac{ {3}^{3n} \times  {3}^{2} -  {3}^{3n}   }{ {3}^{3m}  \times  {2}^{3} }  =  \dfrac{1}{ {3}^{3} }

 \longrightarrow \sf  \dfrac{ {3}^{3n} ( {3}^{2} - 1) }{ {3}^{3m}  \times 8}  =  \dfrac{1}{ {3}^{3} }

 \longrightarrow \sf  \dfrac{ {3}^{3n}  \times 8}{ {3}^{3m}  \times 8}  =  \dfrac{1}{ {3}^{3} }

 \longrightarrow \sf    {3}^{3n - 3m}  =  {3}^{ - 3}

Bases are equal power will also be equal

 \longrightarrow \sf    3n - 3m =  - 3

 \longrightarrow \sf    n - m =  - 1

 \longrightarrow \sf   m -  n  = 1

Hence, Proved!

 \dag  \: \large \boxed{ \red{ \sf \: You \:  must \:  know : }}

If a,b are positive real numbers and m,n are rational numbers,then :

 \sf \: i)  \: \large  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \sf  \: ii) \large \:  {a}^{m}   \div  {a}^{n}  =  {a}^{m - n}

 \sf  \: iii) \large \:  ( {a}^{m} ) ^{n}  =  {a}^{mn}

 \sf  \: iv) \large \:   {a}^{ - n}  =  \dfrac{1}{ {a}^{n} }

 \sf  \: v) \large \:   ( {ab})^{n}  =  {a}^{n}  {b}^{n}

 \sf  \: vi) \large \:  (  \dfrac{a}{b} ) ^{n}  =   \dfrac{ {a}^{n} }{ {b}^{n} }

Answered by Anonymous
230

Answer:

\underline{\bigstar\:\textsf{According to the Question :}}

:\implies\tt \dfrac{9^{n } \times {3}^{2} \times {3}^{n} - {27}^{n} }{ {3}^{3m} \times {2}^{3} } = \dfrac{1}{27}\\\\\\:\implies\tt \dfrac{ {3}^{2n} \times {3}^{2} \times {3}^{n} - {3}^{3n} }{ {3}^{3m} \times {2}^{3} } = \dfrac{1}{27}\\\\\\:\implies\tt \dfrac{ {3}^{2n + 2 + n} - {3}^{3n} }{{3}^{3m} \times {2}^{3} } = \dfrac{1}{ {3}^{3} }\\\\\\:\implies\tt \dfrac{ {3}^{3n + 2} - {3}^{3n} }{ {3}^{3m} \times {2}^{3} } = \dfrac{1}{3^3}\\\\\\:\implies\tt \dfrac{3^{3n} \times {3}^{2}- {3}^{3n} }{ {3}^{3m} \times {2}^{3} } = \dfrac{1}{3^3}\\\\\\:\implies\tt \dfrac{3^{3n} ( {3}^{2} - 1) }{3^{3m} \times 8} = \dfrac{1}{3^3}\\\\\\:\implies\tt \dfrac{3^{3n} \times 8}{ {3}^{3m} \times 8} = \dfrac{1}{3^3}\\\\\\:\implies\tt {3}^{3n - 3m} = {3}^{-3}

{\scriptsize\qquad\bf{\dag}\:\:\textsf{Base is Equal, So Power will be Equal}}\\\\:\implies\tt 3n - 3m = -\:3\\\\\\:\implies\tt 3(n-m)=-\:3\\\\\\:\implies\tt (n-m)=\dfrac{-\:3}{3}\\\\\\:\implies\tt (n-m)=-\:1\\\\\\:\implies\underline{\boxed{\red{\tt (m-n)=1}}}

\rule{200}{2}

\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}


StarrySoul: Perfect! ❤️"
Similar questions