Science, asked by salonibanodiya, 9 months ago

class 9 science chapter gravitational explanation ​

Answers

Answered by mail2me06
4

Answer:

Every object in the universe attracts other object by a force of attraction, called gravitation, which is directly proportional to the product of masses of the objects and inversely proportional to the square of distance between them. This is called Law of Gravitation or Universal Law of Gravitation.

Answered by etamilarasan1978
3

Answer:

Gravity is a force which tries to pull two objects toward each other. Anything which has mass also has a gravitational pull. The more massive an object is, the stronger its gravitational pull is. Earth's gravity is what keeps you on the ground and what causes objects to fall. Gravity is what holds the planets in orbit around the Sun and what keeps the Moon in orbit around Earth. The closer you are to an object, the stronger its gravitational pull is. Gravity is what gives you weight. It is the force that pulls on all of the mass in your body.

Explanation:

Gravity (from Latin gravitas, meaning 'weight'[1]), or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light[2]—are brought toward (or gravitate toward) one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing and forming stars and caused the stars to group together into galaxies, so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker as objects get further away.

File:Apollo 15 feather and hammer drop.ogvPlay media

Hammer and feather drop: astronaut David Scott (from mission Apollo 15) on the Moon enacting the legend of Galileo's gravity experiment. (1.38 MB, ogg/Theora format).

Gravity is most accurately described by the general theory of relativity (proposed by Albert Einstein in 1915), which describes gravity not as a force, but as a consequence of the curvature of spacetime caused by the uneven distribution of mass. The most extreme example of this curvature of spacetime is a black hole, from which nothing—not even light—can escape once past the black hole's event horizon.[3] However, for most applications, gravity is well approximated by Newton's law of universal gravitation, which describes gravity as a force, which causes any two bodies to be attracted to each other, with the force proportional to the product of their masses and inversely proportional to the square of the distance between them.

Gravity is the weakest of the four fundamental interactions of physics, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a consequence, it has no significant influence at the level of subatomic particles.[4] In contrast, it is the dominant interaction at the macroscopic scale, and is the cause of the formation, shape and trajectory (orbit) of astronomical bodies.

The earliest instance of gravity in the Universe, possibly in the form of quantum gravity, supergravity or a gravitational singularity, along with ordinary space and time, developed during the Planck epoch (up to 10−43 seconds after the birth of the Universe), possibly from a primeval state, such as a false vacuum, quantum vacuum or virtual particle, in a currently unknown manner.[5] Attempts to develop a theory of gravity consistent with quantum mechanics, a quantum gravity theory, which would allow gravity to be united in a common mathematical framework (a theory of everything) with the other three fundamental interactions of physics, are a current area of research.

Similar questions