Class 9th
Mathematics
Chapter 12 - Heron's Formulas
Formulas Needed . Give 1 example for each Formuals
Note : Don't copy, Don't spam .
Quality answer with good explanation will be Brainliest .
Answers
Answer:
By Heron's formula,
first,s=a+b+c/2 where a,b,c are the sides of the triangle. After that, apply the following formula of triangle:-
Area of∆=√s(s-a)(s-b)(s-c)
#other formulas related to triangle are following:
area of an euilateral triangle=√3/4a square
area of an isosceles triangle=b/4√4a square-b square
area of a rhombus= 1/2×product of its diagonals
area of a square=side× side
Step-by-step explanation:
Hope it will help you.
If u want some more formulae,take the help of book
Answer :-
Formula :-
Heron's formula is a method used to find the area of a triangle when it's 3 sides are given.
According to the formula,
In order to find the area of the triangle, we first have to find it's semi - perimeter.
PERIMETER :-
Perimeter refers to the total length of the boundry of any figure. It is calculated by adding all the values of the figure's sides.
SEMI PERIMETER :-
Semi perimeter refers to ½ of the perimeter.
'a', 'b' and 'c' here refer to the 3 sides of the triangle.
When the value of the semi perimeter is found,
The area of the figure will be :-
The sides of the triangle are subtracted from the semi perimeter and then multipled with the semi perimeter. The root of this value is the area of the traingle.
Example :-
Let us take an example to understand this formula.
Let,
- a = 4cm
- b = 13cm
- c = 15cm
Now that we have the values of the triangle's sides, let us find the semi perimeter of the triangle
By substituting this value,