Math, asked by zareensiangshai, 8 months ago

Class interval
0-20
20-40
40-60
60-80
80-100
100-120
20
35
Frequency
52
44
38
31
please explain me in details by using Shortcut Method (Assumed Mean Method)​

Answers

Answered by MisterIncredible
40

Question : -

\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} \sf Class interval (CI) &amp; 0-20 &amp; 20-40 &amp; 40-60 &amp; 60-80 &amp; 80-100 &amp; 100-120 \\ \cline{1-7} \sf Frequency (f)</p><p>&amp; 20 &amp; 35 &amp; 52 &amp; 44 &amp; 38 &amp; 31 \\ \cline{1-7}\end{tabular}

ANSWER

Given : -

\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} \sf Class interval (CI) &amp; 0-20 &amp; 20-40 &amp; 40-60 &amp; 60-80 &amp; 80-100 &amp; 100-120 \\ \cline{1-7} \sf Frequency (f)</p><p>&amp; 20 &amp; 35 &amp; 52 &amp; 44 &amp; 38 &amp; 31 \\ \cline{1-7}\end{tabular}

Required to find : -

  • Mean of the whole data ?

Condition mentioned : -

Solve this using the assumed mean method !

Formula used : -

\sf{\bf{ Mean (\bar{x}) = a + \dfrac{ \sum fi di }{\sum fi}}}

Solution : -

\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} \sf Class interval (CI) &amp; 0-20 &amp; 20-40 &amp; 40-60 &amp; 60-80 &amp; 80-100 &amp; 100-120 \\ \cline{1-7} \sf Frequency (f)</p><p>&amp; 20 &amp; 35 &amp; 52 &amp; 44 &amp; 38 &amp; 31 \\ \cline{1-7}\end{tabular}

We need to find the mean ( using the assumed mean method ) !

In order to find the mean we need to prepare some more columns in the given stratical data .

The extra columns which we needed are ; Mid values (xi) & The product of fi & xi values of the respective class intervals.

So,

In order to find the mid values (xi) we need to take the average of the corresponding upper bound & lower bound of the class interval.

Similarly,

The xi ( mid value ) corresponding to the highest frequency is considered as the Assumed mean (a) [ In general]

Let's prepare the table ...

This data will be represented as;

 \begin{tabular}{|c|c|c|c|c|} \cline{1-5} \sf Class Interval (CI) &amp; \sf Frequency (f) &amp; xi &amp; di(di = xi - a)&amp; fidi \\ \cline{1-5} 0-20 &amp; 20 &amp; 10 &amp; - 40&amp; - 800 \\ \cline{1-5} 20-40 &amp; 35 &amp; 30 &amp; - 20&amp; - 700 \\ \cline{1-5} 40-60 &amp; \qquad 52  \longrightarrow &amp; \qquad  \: 50 \longrightarrow \sf{( a)}&amp;0&amp;0 \\ \cline{1-5} 60-80 &amp; 44 &amp;70 &amp;20&amp;880 \\ \cline{1-5} 80-100 &amp; 38 &amp;90 &amp;40&amp;1520 \\ \cline{1-5} 100-120 &amp; 31 &amp;110 &amp;60&amp;1860 \\ \cline{1-5} &amp;  \sum  \sf fi =220 &amp;&amp;&amp; \sum \sf fidi  =2760 &amp; \cline{1 - 5}  \end{tabular}

Using the formula;

\sf{\bf{ Mean (\bar{x}) = a + \dfrac{ \sum fi di }{\sum fi}}}

Here,

fidi = product of the frequency & deviation

fi = frequency

a = assumed mean

The values of these are;

  • fidi = 2760
  • fi = 220
  • a = 50

Substituting the values;

 \: \sf \bf Mean(\bar{x}) = 50 + \dfrac{2260}{220}     \left\lgroup \pink{  \because \: \rm Mean = a +  \frac{ \sum fidi}{ \sum fi} }\right\rgroup \\ \\ \sf \bf Mean (\bar{x}) = 50 + \dfrac{226}{22} \\ \\  \sf \bf Mean (\bar{x} ) = 50 + 10.2727 \\ \\  \sf \bf Mean ( \bar x ) = 60.2727

Therefore,

Mean of the above data = 60.2727


Rythm14: Superb!
MisterIncredible: Thanks °_°
MisterIncredible: Kindly check this answer from website because in app is not working properly
Similar questions