Math, asked by SushmitaVS1321, 1 year ago

Class interval:100-200,200-300,300-400,400-500,500-600
Frequency: 10,18,12,20,40
Find mean by step deviation method

Answers

Answered by sihushambhavi
8
Hope this is helpful!
Attachments:
Answered by Avengers00
13
\underline{\underline{\Huge{\textbf{Question:}}}}

Find the mean of following frequency distribution using step deviation method

\begin{array}{|l|c|c|c|c|c|}\cline{1-6}Class\: Interval:& 100-200&200-300&300-400&400-500&500-600\\\cline{1-6}Frequency:& 10&18&12&20&40\\\cline{1-6}\end{array}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

Using Step-deviation method involves using the formula
\bigstar\: \: \Large{\mathbf{\overline{x} = A+h\left[\dfrac{1}{N}\sum\limits_{i}\: f_{i}\: x_{i}\right]}}

Where,
N is Class Width
A is Assumed Mean

\\
\underline{\Large{\textsf{Step-1:}}}
Find the Assumed Mean (\mathbf{A})

To find Assumed Mean(\mathbf{A}), Check whether No. of frequencies are Odd or Even

\left \{ {{\textsf{Odd;}\quad\quad A=x_{\left(\frac{n+1}{2}\right)}} \\ \atop {\quad\quad\textsf{Even;}\quad\quad A = x_{\left(\frac{n}{2}\right)}\: or\: A = x_{\left(\frac{n}{2}+1\right)}}} \right.


Here,
n = 5\textsf{(odd)}
\implies A = x_{\left(\frac{5+1}{2}\right)}
\implies A = x_{\left(\frac{6}{2}\right)}
\implies A =x_{3} = 350

\\

\underline{\Large{\textsf{Step-2:}}}
Note the class width (\mathbf{h})

\sf{\textsf{Class width is the difference between the lower limits of consecutive classes}}

(or)

\bigstar\: \: \textbf{Class\: Width = Upper\: Class\: Limit \: - \: Lower\: Class\: Limit}

Here,
Class width h= 200-100= 100

\\

\underline{\Large{\textsf{Step-3:}}}
Calculate Class Marks for each Class Interval

\bigstar\: \: \textbf{Class\: Mark = $\dfrac{Lower\: Class\: Limit+Upper\: Class\: Limit}{2}$}

\\

\underline{\Large{\textsf{Step-4:}}}
Calculate d_{i} for each Class Interval

d_{i}= x_{i}-A

\\

\underline{\Large{\textsf{Step-5:}}}
Calculate u_{i} for each Class Interval

u_{i}= \dfrac{d_{i}}{h}

\\

\underline{\Large{\textsf{Step-6:}}}
Calculate f_{i}u_{i} for each Class Interval

\\

\underline{\Large{\textsf{Step-7:}}}
Find the Sum of Frequencies (\mathbf{N})

N =\sum\limits_{i}\: f_{i}

\\

\underline{\Large{\textsf{Step-8:}}}
Find sum of all f_{i}u_{i}

\\

\begin{array}{|c|c|c|c|c|c|}\cline{1-6}Class\: Interval&Class\: Marks(x_{i})& Frequency(f_{i})&d_{i}&u_{i}=\dfrac{d_{i}}{h}&f_{i}u_{i}\\\cline{1-6}100-200&150&10&-200&-2&-20\\200-300&250&18&-100&-1&-18\\300-400&350\: \: \: (=\: A)&12&0&0&0\\400-500&450&20&100&1&20\\500-600&550&40&200&2&80\\\cline{1-6}&&N= \sum\limits_{i}\: f_{i}= 100&&&\sum\limits_{i}\: f_{i}u_{i}=62\\\cline{1-6}\end{array}

\\

\displaystyle\overline{x} = A+h\left[\dfrac{1}{N}\sum\limits_{i}\: f_{i}\: x_{i}\right]

Substitute Values

\overline{x} = 350+100\left[\dfrac{1}{100}(-20-18+0+20+80)\right]

\overline{x} = 350+\cancel{100}\left[\dfrac{1}{\cancel{100}}(62)\right]

\overline{x} = 350 + 62

\overline{x} = 412

\therefore
\blacksquare \: \: \textsf{The Required Mean ($\overline{x}$) = \underline{\Large{\textbf{412}}}}
Similar questions