CLASS X MATHS...
1.If α and β are zeroes of the polynomial x²-2x-15 then form a quadratic polynomial whose zeroes 2α and 2β.
2.If the sum of the zeroes of the polynomial f(t)=kt²+2t+3k is equal to the product then the value of k is________?
3.Find the value of a for which (x-a) is a factor of f(x) =-x³+ax²+3x+9.
4.If x-a/b+a + x-b/c+a + x-c/a+b = 3 then the value of x is______?
Answers
2α+ 2β = 4 4αβ = - 60
x² - 4 x - 60
2) - 2 / k = 3k/k => k = -2/3
3) f(a) = - a³ + a a² + 3a + 9 = 3 a + 9 = 0 => a = -3
4)
[tex](a+b)*[x(a+b+2c)-(a^2+b^2+ac+bc)]\\.\ \ \ \ \ = (ab+ac+bc+c^2) * (3a+3b+c-x)\\\\x[(a+b)(a+b+2c)+(ab+ac+bc+c^2)]=\\.\ \ \ \ (ab+ac+bc+c^2) * (3a+3b+c)+(a+b)(a^2+b^2+ac+bc)\\\\x[a^2+3ab+b^2+3ac+3bc+c^2][/tex]
[tex].\ \ \ \ \ =(3a^2b+3a^2c+7abc+4ac^2+3ab^2+3b^2c+4bc^2+c^3)\\.\ \ \ \ \ \ \ \ +a^3+ab^2+a^2c+abc+a^2b+b^3+abc+b^2c\\\\x[a^2+3ab+b^2+3ac+3bc+c^2]\\.\ \ \ \ =a^3+b^3+c^3+9abc+4a^2b+4a^2c+4ac^2+4ab^2+4b^2c+4bc^2\\\\x=\frac{a^3+b^3+c^3+9abc+4a^2b+4a^2c+4ac^2+4ab^2+4b^2c+4bc^2}{a^2+3ab+b^2+3ac+3bc+c^2}[/tex]
Answer:
1.Sol: ➡️Given that α and β are the zeroes of the polynomial x2 - 2x
-(x-a-b-c)*k 15 then α + β = 2 and αβ = -15 If 2α, 2β are zeros of the
quadratic polynomial then the equation is x2 - 2(α + β)x + 4αβ =0 then Sum of roots = 2(α + β) = 4 Product of roots = 4αβ
= -60 Now the polynomial equation is x2 - 4x - 60 =0.
2.➡️Given quadratic polynomial f(t) = kt2 + 2t +3k α,β are the roots of the quadratic polynomial then α+β = -2/k and αβ = 3k/k According to the condition α+β = αβ -2/k = 3∴ k = -2/3.
3.➡️Given,
x - a is a factor of
{x}^{3} - ax {}^{2} + 2x + a - 1x3−ax2+2x+a−1
we know,
x - a = 0
x = 0+a = a
Substitung the value of x as a,
we have,
(a)^3 - a(a)^2 + 2(a) + a - 1 =0
a^3 - a^3 + 2a + a - 1=0
3a - 1=0
3a =1
a = 1/3
Thus
a = 1/3
4.➡️(x-a-b-c)*K=0
Note -k is some random expression in a , b and c.
This implies =
x-a-b-c=c