Classify the given pairs of sets as disjoint, overlapping, equal or equivalent sets:
i) set X = {/ ℎ 8}
set Y = {/ ℎ 8}
ii) set M = {/ ℎ }
set N = {/ ∈ , −4 < < 2}
iii) set A = {, ,,}
set B = {, , ,}
Answers
Answer:
Appropriate Question :-
The curved surface area of a hollow cylinder is 4375 sq. meter. It is cut along its height and formed a rectangular sheet of width 35 m. Find perimeter of rectangular sheet.
\large\underline{\sf{Solution-}}
Solution−
Given that,
The curved surface area of a hollow cylinder is 4375 sq. meter. It is cut along its height and formed a rectangular sheet of width 35 m.
Let assume that length of rectangular sheet be x m.
So, According to given question,
\begin{gathered}\rm\implies \:CSA_{(cylinder)} = Area_{(rectangle)} \\ \end{gathered}
⟹CSA
(cylinder)
=Area
(rectangle)
\begin{gathered}\rm \: 4375 = Length \times width \\ \end{gathered}
4375=Length×width
\begin{gathered}\rm \: 4375 = x \times 35 \\ \end{gathered}
4375=x×35
\begin{gathered}\rm \: x = \dfrac{4375}{35} \\ \end{gathered}
x=
35
4375
\begin{gathered}\rm\implies \:x \: = \: 125 \\ \end{gathered}
⟹x=125
\begin{gathered}\rm\implies \:Length_{(rectangle)} \: = \: 125 \: m \\ \end{gathered}
⟹Length
(rectangle)
=125m
Now, we have
\begin{gathered}\rm \: Length_{(rectangle)} \: = \: 125 \: m \\ \end{gathered}
Length
(rectangle)
=125m
\begin{gathered}\rm \: Width_{(rectangle)} \: = \: 35 \: m \\ \end{gathered}
Width
(rectangle)
=35m
Now,
\begin{gathered}\rm \: Perimeter_{(rectangle)} \\ \end{gathered}
Perimeter
(rectangle)
\begin{gathered}\rm \: = \: \: \: 2\bigg(Length_{(rectangle)} + Width_{(rectangle)}\bigg) \\ \end{gathered}
= 2(Length
(rectangle)
+Width
(rectangle)
)
\begin{gathered}\rm \: = \: \: \: \: 2(125 + 35) \: \\ \end{gathered}
= 2(125+35)
\begin{gathered}\rm \: = \: \: \: \: 2 \times 160 \\ \end{gathered}
= 2×160
\begin{gathered}\rm \: = \: \: \: \: 320 \: m \\ \end{gathered}
= 320m
Thus,
\begin{gathered}\rm\implies \:Perimeter_{(rectangle)} \: = \: 320 \: m \\ \end{gathered}
⟹Perimeter
(rectangle)
=320m
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}
†
FormulasofAreas:−
⋆Square=(side)
2
⋆Rectangle=Length×Breadth
⋆Triangle=
2
1
×Base×Height
⋆Scalene△=
s(s−a)(s−b)(s−c)
⋆Rhombus=
2
1
×d
1
×d
2
⋆Rhombus=
2
1
d
4a
2
−d
2
⋆Parallelogram=Base×Height
⋆Trapezium=
2
1
(a+b)×Height
⋆EquilateralTriangle=
4
3
(side)
2