classify the living organisms on the basis of habitat and mode of reproduction
Answers
Explanation:
here's ur answer!!
thanks!!
Explanation:
In Linnaeus' time a Two Kingdom system of classification with
Plantae and Animalia kingdoms was developed that included all plants
and animals respectively. This system was used till very recently. This
system did not distinguish between the eukaryotes and prokaryotes,
unicellular and multicellular organisms and photosynthetic (green algae)
and non-photosynthetic (fungi) organisms. Classification of organisms
into plants and animals was easily done and was easy to understand,
but, a large number of organisms did not fall into either category. Hence
the two kingdom classification used for a long time was found inadequate.
A need was also felt for including, besides gross morphology, other
characteristics like cell structure, nature of wall, mode of nutrition, habitat,
methods of reproduction, evolutionary relationships, etc. Classification
systems for the living organisms have hence, undergone several changes
over time. Though plant and animal kingdoms have been a constant
under all different systems, the understanding of what groups/organisms
be included under these kingdoms have been changing; the number and
nature of other kingdoms have also been understood differently by
different scientists over time.Bacteria are the sole members of the Kingdom Monera. They are the most
abundant micro-organisms. Bacteria occur almost everywhere. Hundreds
of bacteria are present in a handful of soil. They also live in extreme habitats
such as hot springs, deserts, snow and deep oceans where very few other
life forms can survive. Many of them live in or on other organisms as
parasites.
Bacteria are grouped under four categories based on their shape: the
spherical Coccus (pl.: cocci), the rod-shaped Bacillus (pl.: bacilli), the
comma-shaped Vibrium
2.1.1 Archaebacteria
These bacteria are special since they live in some of the most harsh habitats
such as extreme salty areas (halophiles), hot springs (thermoacidophiles)
and marshy areas (methanogens). Archaebacteria differ from other bacteria
in having a different cell wall structure and this feature is responsible for
their survival in extreme conditions. Methanogens are present in the gut
of several ruminant animals such as cows and buffaloes and they are
responsible for the production of methane (biogas) from the dung of these
animals.
Figure 2.2 A filamentous blue-green
algae – Nostoc
2.1.2 Eubacteria
There are thousands of different eubacteria or ‘true
bacteria’. They are characterised by the presence of a
rigid cell wall, and if motile, a flagellum. The
cyanobacteria (also referred to as blue-green algae)
have chlorophyll a similar to green plants and are
photosynthetic autotrophs (Figure 2.2). The
cyanobacteria are unicellular, colonial or filamentous,
freshwater/marine or terrestrial algae. The colonies
are generally surrounded by gelatinous sheath. They
often form blooms in polluted water bodies. Some of
these organisms can fix atmospheric nitrogen in
specialised cells called heterocysts, e.g., Nostoc and
Anabaena. Chemosynthetic autotrophic bacteria
oxidise various inorganic substances such as
nitrates, nitrites and ammonia and use the released
energy for their ATP production. They play a great role
in recycling nutrients like nitrogen, phosphorous,
iron and sulphur.
Heterotrophic bacteria are the most abundant
in nature. The majority are important decomposers.
Many of them have a significant impact on human
affairs. They are helpful in making curd from milk,
production of antibiotics, fixing nitrogen