classify the quadratic forms {x {1} }^{2 } + {x {3} }^{2}x1 2 +x3 2
Answers
Step-by-step explanation:


Sign in
How it works
Examples
Reviews
Homework answers
Blog
Contact us
Submit
104 331
Assignments Done
99.3%
Successfully Done
In January 2022

Answer to Question #153072 in Linear Algebra for Kishore Kris
Answers>
Math>
Linear Algebra
Question #153072
3. Reduce the quadratic form x 1 ^ 2 +5 x 2 ^ 2 + x 3 ^ 2 +2x 1 x 2 +2x 2 x 3 +6x 3 x 1 to canonical form through an orthogonal transformation and also find its rank, index, signature and nature of the quadratic form.
Expert's answer
The matrix of the quadratic form is
A=\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \\ \end{bmatrix}A=⎣⎢⎡113151311⎦⎥⎤
Find the eigenvalues and eigenvectors of A
A-\lambda I=\begin{bmatrix} 1-\lambda & 1 & 3 \\ 1 & 5-\lambda & 1 \\ 3 & 1 & 1-\lambda \\ \end{bmatrix}A−λI=⎣⎢⎡1−λ1315−λ1311−λ⎦⎥⎤
\begin{vmatrix} 1-\lambda & 1 & 3 \\ 1 & 5-\lambda & 1 \\ 3 & 1 & 1-\lambda \\ \end{vmatrix}=(1-\lambda)\begin{vmatrix} 5-\lambda & 1 \\ 1 & 1-\lambda \end{vmatrix}∣∣∣∣∣∣∣1−λ1315−λ1311−λ∣∣∣∣∣∣∣=(1−λ)∣∣∣∣∣5−λ111−λ∣∣∣∣∣
-(1)\begin{vmatrix} 1 & 1 \\ 3 & 1-\lambda \end{vmatrix}+(3)\begin{vmatrix} 1 & 5-\lambda \\ 3 & 1 \end{vmatrix}−(1)∣∣∣∣∣1311−λ∣∣∣∣∣+(3)∣∣∣∣∣135−λ1∣∣∣∣∣
=(1-\lambda)^2(5-\lambda)-1+\lambda-1+\lambda+3+3-45+9\lambda=(1−λ)2(5−λ)−1+λ−1+λ+3+3−45+9λ
=-\lambda^3+7\lambda^2-36=−λ3+7λ2−36
This is a characteristic polynomial.
Solve the equation
-\lambda^3+7\lambda^2-36=0−λ3+7λ2−36=0
-\lambda^2(\lambda-6)+(\lambda-6)(\lambda+6)=0−λ2(λ−6)+(λ−6)(λ+6)=0
-(\lambda-6)(\lambda-3)(\lambda+2)=0−(λ−6)(λ