English, asked by Khushi5248, 7 months ago

Classifying sounds heard telephone

Answers

Answered by dsilvapamela
1

Answer:

Explanation:

A variety of algorithms intended for the new generation of hearing aids is presented in this thesis. The main contribution of this work is the hidden Markov model (HMM) approach to classifying listening environments. This method is efficient and robust and well suited for hearing aid applications. This thesis shows that several advanced classification methods can be implemented in digital hearing aids with reasonable requirements on memory and calculation resources.

A method for analyzing complex hearing aid algorithms is presented. Data from each hearing aid and listening environment is displayed in three different forms: (1) Effective temporal characteristics (Gain-Time), (2) Effective compression characteristics (Input-Output), and (3) Effective frequency response (Insertion Gain). The method works as intended. Changes in the behavior of a hearing aid can be seen under realistic listening conditions. It is possible that the proposed method of analyzing hearing instruments generates too much information for the user.

An automatic gain controlled (AGC) hearing aid algorithm adapting to two sound sources in the listening environment is presented. The main idea of this algorithm is to: (1) adapt slowly (in approximately 10 seconds) to varying listening environments, e.g. when the user leaves a disciplined conference for a multi-babble coffee-break; (2) switch rapidly(in about 100 ms) between different dominant sound sources within one listening situation, such as the change from the user's own voice to a distant speaker's voice in a quiet conference room; (3) instantly reduce gain for strong transient sounds and then quickly return to the previous gain setting; and (4) not change the gain in silent pauses but instead keep the gain setting of the previous sound source. An acoustic evaluation shows that the algorithm works as intended.

Similar questions