Math, asked by riteshmaurya0087, 18 days ago

cloth having on area of 5.5 metre square is convert a conical tent of radius 0.7 metre find the height of the tent volume of air inside it​

Answers

Answered by Syamkumarr
1

Answer:

The height of the cone tent = 1.604 m, volume of air in tent= 8.233 m^{3}

Step-by-step explanation:

Given area of cloth = 5.5 sq m,  radius of cone tent = 0.7 m

 the cloth is converted into a conical tent

 the area of conical tent = area of the cloth = 5.5 m^{2}

          lateral area of cone = \pi r\sqrt{h^{2}+r^{2}  }= 5.5

                                        ⇒ \frac{22}{7}\sqrt{h^{2} + (0.7)^{2}  }= 5.5

                                        ⇒ \sqrt{h^{2} + 0.49 } = 5.5 (\frac{ 7}{ 22})

                                        ⇒ h^{2} + 0.49 = [ 5.5 (\frac{ 7}{22} )]^{2}

                                       ⇒ h^{2} + 0.49 = [0.5 (\frac{7}{2} )]^{2}

                                        ⇒ h^{2} +0.49 = [1.75]^{2}

                                        ⇒h^{2} = 3.0625-0.49

                                        ⇒ h^{2} = 2.5725

                                      ⇒ h= 1.604 m ( approximately)

    volume of the air inside tent = \frac{\pi r^{2}h }{3}  

                                                   = \frac{(\frac{22}{7}) (0.7)^{2} (1.604) }{3}

                                                   =  \frac{(22) (0.7)(1.604 ) }{3}  

                                                   = \frac{24.7016}{3} =8.233 cm^{3} (approximately)

                                       

                           

Similar questions