English, asked by sainprakash958, 9 days ago

club. Write a molice to senion be put up the to assemble studant! S ab. You are the secretary of the school sponts 2. motice board intimating selection of the school team for the • for practise for the selection. for the district games. Mention the date and time.
please it's urgent,hurry up?​

Answers

Answered by vyasnandannmvda
0

Answer:

Consider,

\begin{gathered}\rm \: 1 + (1 + 2) + (1 + 2 + 3) + - - - + (1 + 2 + 3 + - - - + n) \\ \end{gathered}

1+(1+2)+(1+2+3)+−−−+(1+2+3+−−−+n)

Let assume that,

\begin{gathered}\rm \:S_n = 1 + (1 + 2) + (1 + 2 + 3) + - - - + (1 + 2 + 3 + - - - + n) \\ \end{gathered}

S

n

=1+(1+2)+(1+2+3)+−−−+(1+2+3+−−−+n)

So, nth term of the series is

\begin{gathered}\rm \: T_n = 1 + 2 + 3 + - - + n \\ \end{gathered}

T

n

=1+2+3+−−+n

\begin{gathered}\rm \: T_n = \displaystyle\sum_{k=1}^n\rm k \\ \end{gathered}

T

n

=

k=1

n

k

\begin{gathered}\rm \: T_n = \dfrac{n(n + 1)}{2} \\ \end{gathered}

T

n

=

2

n(n+1)

\begin{gathered}\rm \: T_n = \dfrac{1}{2}( {n}^{2} + n) \\ \end{gathered}

T

n

=

2

1

(n

2

+n)

So, Sum of n terms of series is given by

\begin{gathered}\rm \: S_n = \displaystyle\sum_{k=1}^n\rm T_k \\ \end{gathered}

S

n

=

k=1

n

T

k

\begin{gathered}\rm \: S_n = \dfrac{1}{2} \displaystyle\sum_{k=1}^n\rm ( {k}^{2} + k) \\ \end{gathered}

S

n

=

2

1

k=1

n

(k

2

+k)

\begin{gathered}\rm \: S_n = \dfrac{1}{2}\bigg( \displaystyle\sum_{k=1}^n\rm {k}^{2} + \displaystyle\sum_{k=1}^n\rm k\bigg) \\ \end{gathered}

S

n

=

2

1

(

k=1

n

k

2

+

k=1

n

k)

\begin{gathered}\rm \: S_n = \dfrac{1}{2}\bigg(\dfrac{n(n + 1)}{2} + \dfrac{n(n + 1)(2n + 1)}{6} \bigg) \\ \end{gathered}

S

n

=

2

1

(

2

n(n+1)

+

6

n(n+1)(2n+1)

)

\begin{gathered}\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(1 + \dfrac{2n + 1}{3} \bigg) \\ \end{gathered}

S

n

=

2

1

×

2

n(n+1)

(1+

3

2n+1

)

\begin{gathered}\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(\dfrac{3 + 2n + 1}{3} \bigg) \\ \end{gathered}

S

n

=

2

1

×

2

n(n+1)

(

3

3+2n+1

)

\begin{gathered}\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(\dfrac{2n + 4}{3} \bigg) \\ \end{gathered}

S

n

=

2

1

×

2

n(n+1)

(

3

2n+4

)

\begin{gathered}\rm \: S_n = \dfrac{1}{2} \times \dfrac{n(n + 1)}{2}\bigg(\dfrac{2(n + 2)}{3} \bigg) \\ \end{gathered}

S

n

=

2

1

×

2

n(n+1)

(

3

2(n+2)

)

\begin{gathered}\rm\implies \:S_n = \dfrac{n(n + 1)(n + 2)}{6} \\ \end{gathered}

⟹S

n

=

6

n(n+1)(n+2)

Hence, Proved

Similar questions