Chemistry, asked by divyajangir123, 1 year ago

CO(g) + 2H2 = CH3OH , derive an expression for equilibrium constant Kp in terms of the extent of reaction ∆ and the total pressure p1 if initially 2 mol of CO and 3 mol of the H2 are mixed ?​

Answers

Answered by BarrettArcher
6

Answer : The expression for equilibrium constant Kp will be, K_p=\frac{\alpha(5-2\alpha)^2}{(2-\alpha)(3-4\alpha)^2(P_1)^2}

Solution :

Degree of dissociation = \alpha

Total pressure = P_1

The given equilibrium reaction is,

                       CO(g)+2H_2(g)\rightleftharpoons CH_3OH(g)

Initially              2          3                     0

At equilibrium  (2-\alpha)   (3-2\alpha)           \alpha

\text{ Total number of moles}=2-\alpha+3-2\alpha+\alpha=5-2\alpha

Now we have to calculate the partial pressure of CO and H_2

\text{ Partial pressure of }CO=\frac{\text{Moles of }CO}{\text{Total number of moles}}\times P_1=\frac{2-\alpha}{5-2\alpha}\times P_1

\text{ Partial pressure of }H_2=\frac{\text{Moles of }H_2}{\text{Total number of moles}}\times P_1=\frac{3-2\alpha}{5-2\alpha}\times P_1

\text{ Partial pressure of }CH_3OH=\frac{\text{Moles of }CH_3OH}{\text{Total number of moles}}\times P_1=\frac{\alpha}{5-2\alpha}\times P_1

The relation between the K_p and the total pressure is,

K_p=\frac{(p_{CH_3OH})}{(p_{CO})\times (p_{H_2})^2}

Now put all the values of partial pressure, we get

K_p=\frac{(\frac{\alpha}{5-2\alpha}\times P_1)}{(\frac{2-\alpha}{5-2\alpha}\times P_1)\times (\frac{3-2\alpha}{5-2\alpha}\times P_1)^2}

K_p=\frac{\alpha(5-2\alpha)^2}{(2-\alpha)(3-4\alpha)^2(P_1)^2}

Therefore, the expression for equilibrium constant Kp will be, K_p=\frac{\alpha(5-2\alpha)^2}{(2-\alpha)(3-4\alpha)^2(P_1)^2}

Similar questions