Math, asked by mudittak271, 6 months ago

CO.
ICBSE 2006C)
6. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction
becomes 1/4. And, when 6 is added to numerator and the denominator is multiplied by
3, it becomes 2/3. Find the fraction.​

Answers

Answered by ujjalkrnath94
1

Step-by-step explanation:

Let the numerator be x and denominator be y

Let the numerator be x and denominator be y⇒Nowbyfirstcondition

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 =

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 4

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3y

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 =

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 3

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................2

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)21x=84

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)21x=84x=4

Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)21x=84x=4by1y=5

Similar questions