CO.
ICBSE 2006C)
6. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction
becomes 1/4. And, when 6 is added to numerator and the denominator is multiplied by
3, it becomes 2/3. Find the fraction.
Answers
Answered by
1
Step-by-step explanation:
Let the numerator be x and denominator be y
Let the numerator be x and denominator be y⇒Nowbyfirstcondition
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 =
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 4
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3y
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 =
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 3
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................2
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)21x=84
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)21x=84x=4
Let the numerator be x and denominator be y⇒Nowbyfirstcondition y+3x−2 = 41 .⇒4(x−2)=(y+3)⇒4x−8=y+3=>4x−y=11........................1And By second condition 3yx+6 = 32 ⇒3(x+6)=6y⇒3x−6y=−18............................................26(1)−(2)21x=84x=4by1y=5
Similar questions