Math, asked by UtkarshG0d, 6 months ago

Coefficient of variation of the data 1,3,5,7,9 is
a)54.23
b) 56.57
c) 55.41
d) 60.19​

Answers

Answered by jarnalsingh622
1

Answer:

opine a

Step-by-step explanation:

i thikh thise is right ans

Answered by Syamkumarr
0

Answer:

Coefficient of variance = 56.57

Step-by-step explanation:

Given data    1, 3, 5, 7, 9

here we need to find coefficient of variance

the formula for coefficient of variation CV = (S.D/ x)100

here S.D = standard deviation of the data

           x  = mean of the data  

here we will calculate mean and S.D of the given data

mean of the data  x = (1+3+5+7+9)/ 5 = 25/5 = 5  

standard deviation of the data = ∑(x_{n} -x)²/N

here (x_{n} -x)²  values for each observation    

        (x₁ - x)²  =  (1 - 5)²   = (-4)² = 16    

        (x₂ - x)²  =  (3 - 5)² = (-2)² = 4  

        (x₃ - x)²  =  (5 - 5)² =  0    

        (x₄ - x)²  =  (7 - 5)² = (2)² = 4

        (x₅ - x)²  =  (9 - 5)² = (4)² = 16    

S.D of the given data =√∑(x_{n} -x)²/N  

                                   = √(16 + 4 + 4 + 16)/ 5

                                   = √40/5 = √8  = √(4×2)

                                    = 2(√2)  = 2(1.4142) = 2.8284     [ ∵√2 = 1.4142 ]

coefficient of variation CV = (S.D/ x)100

                                            = (2.8284 /5)(100)

                                            =  56.568 (which is approximately 56.57)

coefficient of variation CV = 56.57        

Similar questions