Math, asked by lucky2304, 9 months ago

Coefficient of x^11 in (2x^2+3/x^3)^13

Answers

Answered by bhanuprakashreddy23
42

Answer:

Learn from the attachment

Attachments:
Answered by pulakmath007
15

SOLUTION

FORMULA TO BE IMPLEMENTED

The  { \: (r + 1)}^{th} term of the Binomial Expansion of  {(x + a)}^{n} is  \displaystyle \: T_{r+1} =  \binom{n}{r}  \:  {a}^{n - r}  {x}^{r}

Coefficient of  \displaystyle \:  {x}^{r}  \:  \: is \:  \: \binom{n}{r}  \:  {a}^{n - r}

EVALUATION

Let  {x}^{11} appears in  { \: (r + 1)}^{th} term of the Binomial Expansion of  \displaystyle \:  {(2 {x}^{2} +  \frac{3}{ {x}^{3} })  }^{13}

Then

 \displaystyle \: T_{r+1} =  \binom{13}{r}  \:  {(2 {x}^{2}) }^{13 - r}  {( \frac{3}{ {x}^{3} } )}^{r}

 \implies \:  \displaystyle \: T_{r+1} =  \binom{13}{r}  \:   {2}^{13 - r} \times  {3}^{r}   \times {( {x}) }^{26 - 2r - 3r}

 \implies \:  \displaystyle \: T_{r+1} =  \binom{13}{r}  \:   {2}^{13 - r} \times  {3}^{r}   \times {( {x}) }^{26 - 5r}

Therefore

26 - 5r \:  = 11

 \implies \:  - 5r =  - 15

 \therefore \:  \: r \:  = 3

Hence the required coefficient is

 \displaystyle \: =  \binom{13}{3}  \:  \times   {2}^{13 - 3} \times  {3}^{3}

 \displaystyle \: =  \binom{13}{3}  \:  \times   {2}^{10} \times  {3}^{3}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. (32C0)^2-(32C1)^2+(32C2)^2-...

https://brainly.in/question/28583245

2. radius of curvature of the curve x^2/3 + y^2/3 = a^2/3

https://brainly.in/question/13357557

Similar questions