Coeficient of earth pressure at rest is generally less than
1. But it can be greater than 1, if the soil is
(A) normally consolidated (B) highly organic
(C) heavily overconsilidated (D) elastic
Answers
Answer:
normally consolidated
Answer:
The in situ lateral pressure of soil is called earth pressure at rest and it is generally calculated by the product of the overburden stress times the coefficient K0; the latter is called the coefficient of earth pressure at rest. K0 can be obtained directly in the field based on e.g. the dilatometer test (DMT) or a borehole pressuremeter test (PMT), although it is more commonly calculated using the well-known Jaky's formula. For loosely deposited sands at rest, Jaky showed analytically that Ko deviates from unity with downward trend as the sinusoidal term of the internal friction angle of material increases, i.e.
The in situ lateral pressure of soil is called earth pressure at rest and it is generally calculated by the product of the overburden stress times the coefficient K0; the latter is called the coefficient of earth pressure at rest. K0 can be obtained directly in the field based on e.g. the dilatometer test (DMT) or a borehole pressuremeter test (PMT), although it is more commonly calculated using the well-known Jaky's formula. For loosely deposited sands at rest, Jaky showed analytically that Ko deviates from unity with downward trend as the sinusoidal term of the internal friction angle of material increases, i.e.{\displaystyle K_{0(NC)}=1-\sin \phi '}
The in situ lateral pressure of soil is called earth pressure at rest and it is generally calculated by the product of the overburden stress times the coefficient K0; the latter is called the coefficient of earth pressure at rest. K0 can be obtained directly in the field based on e.g. the dilatometer test (DMT) or a borehole pressuremeter test (PMT), although it is more commonly calculated using the well-known Jaky's formula. For loosely deposited sands at rest, Jaky showed analytically that Ko deviates from unity with downward trend as the sinusoidal term of the internal friction angle of material increases, i.e.{\displaystyle K_{0(NC)}=1-\sin \phi '} Jaky's coefficient has been proved later to be also valid for normally consolidated granular deposits and normally consolidated clays
Explanation: