Math, asked by shivammishra9147, 7 months ago

colle
1. A conical tent requires 264 m² of canvas. If the slant
height is 12 m, find the vertical height.

Answers

Answered by Brâiñlynêha
41

\underline{\bigstar{\sf \ Given :- }}

  • C.S.A of tent = 264m^2
  • Slant height (l)= 12m

\underline{\bigstar{\sf \ To \ Find :- }}

  • We have to find the Vertical height of the tent (h)

Solution :-

  • Find the value of r

\boxed{\sf \dag\ C.S.A \ of \ cone = \pi r l }

\dashrightarrow\sf \pi r l = 264\\ \\ \\ \dashrightarrow\sf \dfrac{22}{7}\times 12\times r = 264\\ \\ \\ \dashrightarrow\sf 12r= \dfrac{264\times 7}{\cancel{22}}\\ \\ \\ \dashrightarrow\sf r= \dfrac{\cancel{12}\times 7}{\cancel{12}}\\ \\ \\ \dashrightarrow{\sf {\red{\ r= 7\ m}}}

Now we know the formula to find the slant height of the cone -

\boxed{\sf l^2=r^2+h^2}

\dashrightarrow\sf (12)^2= (7)^2+h^2 \\ \\ \\ \dashrightarrow\sf 144=49+h^2\\ \\ \\ \dashrightarrow\sf h^2= 144-49\\ \\ \\ \dashrightarrow\sf h^2= 95\\ \\ \\ \dashrightarrow\sf h= \sqrt{95}\\ \\ \\ \dashrightarrow{\boxed{\sf {\star\ \ h=  9.75m}}}

\boxed{\bigstar{\textsf{ Vertical\ Height \ of \ cone = {\textbf{ 9.75m}}}}}

\underline{\bigstar{\sf \ Other\ important \ Formulas\  :- }}

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\  Surface\ Area \ of \ Sphere = 4 \pi r^2

Answered by SaI20065
76

\small\sf\underline\blue{Question:-}

\rightarrowA conical tent requires 264 m² of canvas. If the slant

height is 12 m, find the vertical height.

\small\sf\underline\blue{Given:-}

\rightarrowA conical tent requires 264 m² of canvas.

\rightarrowCSA of tent = 264m²

\rightarrowSlant height = 12m

\rightarrowπrl = 264

\rightarrow22\7×r×12 = 264

\rightarrowr =264×7\div22×12

r = 7cm

\small\sf\underline\blue{Let \;h \:be\: the\: vertical\: height\:}

\small\sf\underline\blue{We \:know,}

\rightarrow l² = r²+h²

\rightarrow h =√l² -√r²

\rightarrow h = √12²-√7²

\rightarrow h = √95

\rightarrow h = 9.75 m

{\huge{\boxed{\overline{\mid{\blue{9.75}}}}}}

Similar questions