Combined Equation of L and l1 is 2x²+axy+3y² and combined equatio. of l and l2 is 2x²+bxy-3y².If l1 is perpendicular to l2 then a²+b² is
Answers
Answered by
0
Answer: 26
Step-by-step explanation:
Let L⇒y=mxL⇒y=mx,
L1⇒y=kxL1⇒y=kx
L2⇒y=−1kxL2⇒y=−1kx
Now, (y−mx)(y−kx)=0(y−mx)(y−kx)=0
y2−ykx−mxy+mkx2=0y2−ykx−mxy+mkx2=0
⇒mkx2−(k+m)xy+y2=0⇒mkx2−(k+m)xy+y2=0
Given that, 2x2+axy+3y2=02x2+axy+3y2=0
or 23x2+a3xy+y2=023x2+a3xy+y2=0
On comparing, mk=23′−(k+m)=a3…mk=23′−(k+m)=a3…(i)
Now, (y−mx)(y+xk)=0(y−mx)(y+xk)=0
⇒y2+xyk−mxy−mx2k=0⇒y2+xyk−mxy−mx2k=0
⇒−mkx2+(1k−m)xy+y2=0⇒−mkx2+(1k−m)xy+y2=0
which is 2x2+bxy−3y2=02x2+bxy−3y2=0
or −23x2−b3xy+y2=0−23x2−b3xy+y2=0
On comparing, −mk=−23,−b3=1k−m−mk=−23,−b3=1k−m
So, m=2k3,−b3=1−kmk…m=2k3,−b3=1−kmk…(ii)
By solving Eqs. (i) and (ii), we get
m=23,k=1m=23,k=1 and a=−5,b=−1a=−5,b=−1
∴a2+b2=25+1=26
Similar questions