Common term in a² - b² and a³ - b³ is ?
Answers
Answered by
1
Answer:
a-b
Step-by-step explanation:
a²-b²= (a-b)(a+b)
a³-b³= (a-b)(a²+ab+b²)
Hope it helps. Please mark as brainliest.
Answered by
0
We know the well-known formula
(a-b)³=a³-3 a²b+3 ab²-b³
By transposition,
a³ - b³ = (a-b)³ + 3 a²b - 3 ab²
a³ - b³ = (a-b)³ +3 ab(a-b)
a³ - b³ = (a-b) [(a-b)² +3 ab]
a³ - b³ = (a-b) [(a-b)² +3 ab]
We all know (a - b)² = a² - 2 ab + b²
So
a³ - b³ = (a-b) [(a² - 2 ab + b²) +3 ab]
a³-b³= (a-b)(a²+ab+ b²) [Proved]
(a-b)³=a³-3 a²b+3 ab²-b³
By transposition,
a³ - b³ = (a-b)³ + 3 a²b - 3 ab²
a³ - b³ = (a-b)³ +3 ab(a-b)
a³ - b³ = (a-b) [(a-b)² +3 ab]
a³ - b³ = (a-b) [(a-b)² +3 ab]
We all know (a - b)² = a² - 2 ab + b²
So
a³ - b³ = (a-b) [(a² - 2 ab + b²) +3 ab]
a³-b³= (a-b)(a²+ab+ b²) [Proved]
Similar questions