Math, asked by Anonymous, 9 days ago

Compare log3 with base 2 with log5 with base 3.

Remember if the question if done by directly substituting the values, it will be consider as spam.

Answers

Answered by debanjanghosh2004
14

Answer:

log(2 base)3 = { (log3)²÷ log7 } × log(3 base)5

Step-by-step explanation:

Let, log(2 base)3 = n × log(3 base)5

or, (log3 ÷ log2) = n× ( log5÷ log3)

or, n = (log3)² ÷ (log5×log2)

or, n= (log3)² ÷ log7

Answered by mathdude500
46

\large\underline{\sf{Solution-}}

Let assume that,

 \rm \: log_{3}(5)  \:  <  \:  log_{2}(3)  \\

can be further rewritten as

\rm \:iff \:  \:  5 <  {3}^{ log_{2}(3) }  \\

On squaring both sides, we get

\rm \:iff \:  \:   {5}^{2}  <  {3}^{ 2 \: log_{2}(3) }  \\

We know,

\boxed{\sf{  \:\rm \: y \:  log_{a}(x)  \:  =  \:  log_{a}( {x}^{y} )  \:  \: }} \\

So, using this result, we get

\rm \:iff \:  \:  25 <  {3}^{ log_{2}( {3}^{2} ) }  \\

\rm \: iff \:  \: 25 <  {3}^{ log_{2}9}  \\

\rm \:iff \:  \:  25 <  {3}^{ log_{2}9} <  {3}^{ log_{2}(8) }   \\

\rm \: iff \:  \: 25 < {3}^{ log_{2}(8) }   \\

\rm \: iff \:  \: 25 < {3}^{ log_{2}( {2}^{3} ) }   \\

\rm \:iff \:  \:  25 < {3}^{ 3log_{2}( 2) }   \\

We know,

\boxed{\sf{  \:\rm \:  log_{x}(x) \:  =  \: 1 \:  \: }} \\

So, using this identity, we get

\rm \:iff \:  \:  25 <  {3}^{3}  \\

\rm \: iff \:  \: 25 <  27\\

\rm \: which \: is \: true \\

Hence, our assumption is true.

 \rm\implies \:\rm \: log_{3}(5)  \:  <  \:  log_{2}(3)  \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\sf{  \:\rm \: logx + logy = logxy \:  \: }} \\

\boxed{\sf{  \:\rm \: logx  -  logy = log \frac{x}{y}  \:  \: }} \\

\boxed{\sf{  \:\rm \:  log_{x}(y) =  \frac{logy}{logx} \:  \: }}

\boxed{\sf{  \:\rm \:  log_{x}(x) =  1 \:  \: }}

\boxed{\sf{  \:\rm \:  log_{x}( {x}^{y} ) =  y \:  \: }}

\boxed{\sf{  \:\rm \:  log_{ {x}^{z} }( {x}^{y} ) =   \frac{y}{z}  \:  \: }}

\boxed{\sf{  \:\rm \:  log_{ {w}^{z} }( {x}^{y} ) =   \frac{y}{z} log_{w}(x)   \:  \: }}

\boxed{\sf{  \:\rm \:  {a}^{ log_{a}(x) }  \:  =  \: x \:  \: }} \\

\boxed{\sf{  \:\rm \:  {a}^{ y \: log_{a}(x) }  \:  =  \:  {x}^{y}  \:  \: }} \\

Similar questions