Math, asked by prashantshirkep, 7 months ago

Compare the following pair of ratio √13/√8, √7/ √5​

Answers

Answered by pulakmath007
6

\displaystyle \sf   \frac{ \sqrt{13} }{ \sqrt{8} }  \:  >  \:  \frac{ \sqrt{7} }{ \sqrt{5} }

Given :

\displaystyle \sf   \frac{ \sqrt{13} }{ \sqrt{8} }  \:,  \:  \frac{ \sqrt{7} }{ \sqrt{5} }

To find :

Compare the ratios

Solution :

Step 1 of 2 :

Write down the given ratios

Here the given ratios are

\displaystyle \sf   \frac{ \sqrt{13} }{ \sqrt{8} }  \:,  \:  \frac{ \sqrt{7} }{ \sqrt{5} }

Step 2 of 2 :

Compare the given ratios

LCM of 8 and 5 = 40

\displaystyle \sf   \frac{ \sqrt{13} }{ \sqrt{8} }   =  \frac{ \sqrt{13 \times 5} }{ \sqrt{8 \times 5} }  =  \frac{ \sqrt{65} }{ \sqrt{40} }

\displaystyle \sf    \frac{ \sqrt{7} }{ \sqrt{5} }  =  \frac{ \sqrt{7 \times 8} }{ \sqrt{5 \times 8} }  =  \frac{ \sqrt{56} }{ \sqrt{40} }

Now ,

\displaystyle \sf  65 > 56

\displaystyle \sf{ \implies } \sqrt{65} >  \sqrt{56}

\displaystyle \sf{ \implies } \frac{ \sqrt{65} }{ \sqrt{40} }  >  \frac{ \sqrt{56} }{ \sqrt{40} }

\displaystyle \sf{ \implies }\frac{ \sqrt{13} }{ \sqrt{8} }  \:  >  \:  \frac{ \sqrt{7} }{ \sqrt{5} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

#SPJ3

Answered by mangsulebhujbali4
0

Step-by-step explanation:

कंपेयर रूट 30 अपऑन रूट 8 एंड रूट 7 अपऑन रूट 5

Similar questions