Math, asked by aaroosh69, 3 months ago

compare the following ratio root 21 upon root 33 ,3 root 2 upon 7 root 6​

Answers

Answered by pulakmath007
9

SOLUTION

TO COMPARE

The below ratios

 \displaystyle \sf{ \frac{ \sqrt{21} }{ \sqrt{33} } \: \:  \:   \: and \:  \:  \:  \:  \frac{3 \sqrt{2} }{7 \sqrt{6} }  }

EVALUATION

 \displaystyle \sf{ \frac{ \sqrt{21} }{ \sqrt{33} }  }

 \displaystyle \sf{  = \frac{ \sqrt{7 \times 3} }{ \sqrt{3 \times 11} }}

 \displaystyle \sf{  = \frac{ \sqrt{7} }{ \sqrt{11} } }

 \displaystyle \sf{  = \frac{ \sqrt{49} }{ \sqrt{77} } }

Again

 \displaystyle \sf{ \frac{3 \sqrt{2} }{7 \sqrt{6} }  }

 \displaystyle \sf{  = \frac{3 \sqrt{2} }{7 \sqrt{3 \times 2} }  }

 \displaystyle \sf{  = \frac{3  }{7 \sqrt{3} }  }

 \displaystyle \sf{  = \frac{ \sqrt{3}   }{ \sqrt{7} }  }

 \displaystyle \sf{  = \frac{ \sqrt{33} }{ \sqrt{77} } }

Here

 \displaystyle \sf{ \sqrt{49}  >   \sqrt{33} }

 \displaystyle \sf{  \implies \: \frac{ \sqrt{49} }{ \sqrt{77} } >  \frac{ \sqrt{33} }{ \sqrt{77} }  }

 \displaystyle \sf{ \implies \:  \frac{ \sqrt{21} }{ \sqrt{33} } >  \frac{3 \sqrt{2} }{7 \sqrt{6} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions