Physics, asked by 2021ompatil, 1 day ago

Compare the kinetic energy and potential energy of a particle of a particle performing shm at the distance of x= A/2​

Answers

Answered by umeshwarkad1983
0

Answer:

18 Page no ans ahe maths

hi

Answered by SmritiSami
1

Given,

Position of the particle x = \frac{A}{2}

where A = amplitude

To find,

The ratio of kinetic energy to potential energy.

Solution,

We know that,

The velocity of a particle performing S.H.M. at a distance of x from its mean position is;

v = ω \sqrt{A^2-x^2}

v = ω \sqrt{A^2-(\frac{A}{2})^2 }

v^{2} = \frac{3}{4} Aω²

Now,

The kinetic energy(KE) of the particle performing S.H.M = \frac{1}{2} mv^{2}

                                                                                     = \frac{1}{2} m \frac{3}{4} A^2ω²

                                                                                     = \frac{3}{8} mA²ω²

                                                                                     = \frac{3}{8} k A^2   (∴ω²=\frac{k}{m})

The potential energy(PE) of a particle performing S.H.M is given by,

Potential Energy   = \frac{1}{2} k x^2      

                               = \frac{1}{2} k \frac{A^2}{4}

Now, Taking the ratio of KE to PE ;

\frac{KE}{PE}   = \frac{\frac{3}{8}kA^2 }{\frac{1}{8}kA^2 }

        = 3:1

Thus,

The ratio of KE to the PE of a particle executing SHM at a distance equal to A/2, the distance measured from its equilibrium position is 3:1.

Similar questions