Math, asked by dhivyashreenarayanan, 6 months ago

Compare the rational numbers : 4/-3 and-8/7

Answers

Answered by 3148
0

Answer:

yjbihu665b84b674btrbt un57i4 6uitubuimphhuuuuhhb. h

Answered by spacelover123
7

Question

Compare the rational numbers : \frac{4}{-3}\ and\  \frac{-8}{7}

\rule{300}{1}

Answer

First we will make the denominators positive.

\frac{4\times -1 }{-3\times -1 } =\frac{-4}{3}

\frac{-8\times 1 }{7\times 1 } =\frac{-8}{7}

Now we will find the LCM of the denominators.

\begin{array}{r | l} 3   &3,7 \\ \cline{2-2}  7 &   1,7\\ \cline{2-2}  &  1,1 \\   \end{array}

LCM of denominators ⇒ 3×7 = 21

With the help of the LCM we will make the denominators equal.

\frac{-4\times 7}{3\times 7 } = \frac{-28}{21}

\frac{-8\times 3}{7\times 3} = \frac{-24}{21}

Now we need to compare the numerators.

\frac{-28}{21} <\frac{-24}{21}

\frac{4}{-3} < \frac{-8}{7}

\bf \therefore \frac{4}{-3} < \frac{-8}{7}

\rule{300}{1}

Additional Information

Rational numbers are numbers that can be represented in p/q form where 'p' and 'q' are integers and q is not equal to 0.

Rational Numbers are similar to fractions.

Numbers that are not rational numbers are known to be irrational numbers. One of the famous irrational number is 'pi' ⇒ π

\rule{300}{1}

Similar questions