Math, asked by aalokyadav496, 6 hours ago

Compare the sum of n terms of the series: 1 + 2a +3a2 +4a3 +……. and a+ 2a + 3a+4a …up to n terms​

Answers

Answered by divyanshaitwal246
3

Answer:

Step-by-step explanation:

Answered by VaibhavSR
3

Answer: S_{1}= \frac{1-a^{n} }{(a-1)^{2} }-\frac{na^{n} }{1-a}  

              S_{2}=\frac{an(3+n) +2}{2}

Step-by-step explanation:

  • The first series is:-

       S=1+2a+3a^{2}+4a^{3}+.............(n-1)a^{n-2} +na^{n-1}

     If we multiply by a on both sides we get,

      Sa=0+a+2a^{2} +3a^{3}+4a^{4}+.............(n-1)a^{n-1} +na^{n}

     Subtracting Sa from S we get,

     S(1-a)=1+a+a^{2}+a^{3}+..............+a^{n-1}-na^{n}

Now the given series becomes an G.P.

S= \frac{1-a^{n} }{(a-1)^{2} }-\frac{na^{n} }{1-a}  is the required sum of the series.

  • The second series is:-

        S=1+2a+3a+4a+..........na

We subtract 1 from each sides and get,

       S-1=2a+3a+4a+............na

    ⇒S-1=\frac{n}{2}[4a+(n-1)a]

    ⇒ S=\frac{n}{2}[4a+(n-1)a] +1

   ∴ S=\frac{an(3+n) +2}{2}

  • Hence the equations for sum of the two series are calculated above.

#SPJ2

     

Similar questions