Math, asked by gammlast, 8 months ago

compare the surds 6√2 & 5√5 ​

Attachments:

Answers

Answered by pravinakokate26
28

Answer:

6√2 < 5√5

Step-by-step explanation:

Compare 6√2 and 5√5 :

Solution :

   6√2 and 5√5

   = √2 x 6 x 6 ; √5 x 5 x 5

   = √36 x 2 ; √25 x 5

   = √72 ; √125

   = 72 < 125

Therefore, 6√2 < 5√5.

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

Compare the surds 6√2 & 5√5

EVALUATION

Here the given surds are 6√2 & 5√5

Now

 \sf{6 \sqrt{2}  =  \sqrt{6 \times 6 \times 2} =  \sqrt{72}  }

 \sf{5\sqrt{5}  =  \sqrt{5 \times 5 \times 5} =  \sqrt{125}  }

Now we have

 \sf{72 &lt; 125 }

 \sf{ \implies \:  \sqrt{ 72 }&lt;  \sqrt{ 125 }}

 \sf{ \implies \: 6 \sqrt{ 2 }&lt; 5 \sqrt{ 5 }}

FINAL ANSWER

 \sf{  \: 6 \sqrt{ 2 }&lt; 5 \sqrt{ 5 }}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions