Physics, asked by nanms7735, 8 months ago

compare the time period of two pendullums of length 1m and 16m

Answers

Answered by rukhsarmemon974
1

Answer:

1:4

hope you understand...

Attachments:
Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T_{1}:T_{2}=1:4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies Length( l_{1}) = 1 \: m \\  \\ \tt:\implies Length( l_{2}) = 16\: m \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Comparison \:of \: time \: period =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  T_{1} = 2\pi \sqrt{ \frac{ l_{1} }{g} }  \\  \\ \tt: \implies  T_{1} =2\pi \sqrt{ \frac{1}{g} }  -  -  -  -  - (1) \\  \\  \bold{Similarly : } \\ \tt: \implies  T_{2} = 2\pi \sqrt{ \frac{ l_{2}}{g} }  \\  \\ \tt: \implies  T_{2} = 2\pi \sqrt{ \frac{16}{g} }  -  -  -  -  - (2) \\  \\  \text{Taking \: ratio  \: of \: (1) \: and \: (2)} \\  \\  \tt:  \implies  \frac{ T_{1} }{ T_{2} }  =  \frac{   2\pi\sqrt{ \frac{1}{g} }   }{ 2\pi \sqrt{ \frac{16}{g} }  }  \\  \\ \tt:  \implies  \frac{ T_{1} }{ T_{2} } =   \sqrt{ \frac{1}{g} }   \times  \sqrt{ \frac{g}{16} }  \\  \\ \tt:  \implies  \frac{ T_{1} }{ T_{2} }  = \sqrt{ \frac{1}{16} }  \\  \\ \tt:  \implies  \frac{ T_{1} }{ T_{2} }  = \frac{1}{4}  \\  \\  \green{\tt:  \implies  { T_{1} } : { T_{2} }  =1 : 4} \\  \\   \green{\tt \therefore Time \: period \: of \:  l_{2} \: is \:4 \: times \: of \: time \: period \: of \:  l_{1}}

Similar questions