Physics, asked by rajveervirk64, 5 months ago

Compare the time periods of two pendulums of length
1 m and 9 m
solve it .​

Answers

Answered by Arceus02
11

Given:-

  • Length of first pendulum = \sf l_1 = 1\ m
  • Length of second pendulum = \sf l_2 = 9\ m

\\

To compare:-

  • Time period of first pendulum \sf (T_1) and time period of second pendulum \sf (T_2).

\\

Formula to be used:-

  • \sf T = 2\pi \sqrt{\dfrac{l}{g}} where T is the time period of the pendulum, l is the length of the pendulum (measured from point where the pendulum is connected to the upper support till the centre of the Bob) and g is the acceleration due to gravity.

\\

Answer:-

Finding time period of first pendulum:-

\sf T_1 = 2\pi \sqrt{\dfrac{l_1}{g}}

Putting the value of \sf l_1 = 1\ m,

\longrightarrow \sf T_1 = 2\pi \sqrt{\dfrac{1}{g}}\quad \quad \dots (1)

\\

Finding time period of second pendulum:-

\sf T_2 = 2\pi \sqrt{\dfrac{l_2}{g}}

Putting the value of \sf l_2 = 9\ m,

\longrightarrow \sf T_2 = 2\pi \sqrt{\dfrac{9}{g}}\quad \quad \dots (2)

\\

Finding the relation between the time periods:-

From (1) and (2),

\sf \dfrac{T_1}{T_2} = \dfrac{ \bigg( 2\pi \sqrt{\dfrac{1}{g}} \bigg) }{ \bigg( 2\pi \sqrt{\dfrac{9}{g}}\bigg) }

\sf \longrightarrow \dfrac{T_1}{T_2} = \dfrac{ \bigg( \cancel{2\pi} \sqrt{\dfrac{1}{g}} \bigg) }{ \bigg( \cancel{2\pi} \sqrt{\dfrac{9}{g}}\bigg) }

\sf \longrightarrow \dfrac{T_1}{T_2} = \dfrac{\bigg( \dfrac{\sqrt{1}}{\cancel{\sqrt{g}}}  \bigg)}{\bigg( \dfrac{\sqrt{9}}{\cancel{\sqrt{g}}}  \bigg)  }

\sf \longrightarrow \dfrac{T_1}{T_2} = \dfrac{\sqrt{1}}{\sqrt{9}}

\sf \longrightarrow \dfrac{T_1}{T_2} = \dfrac{1}{3}

\longrightarrow \underline{\underline{\sf{\green{3T_1 = T_2}}}}

Similar questions