compare the ways which were used to make our immune system stronger in the
past and the ways which are being used at this time to fight such pandemics.
Answers
Answer:
Until a vaccine is available, our immune systems will need to adapt unaided to COVID-19.
The immune system is the body’s multi-level defence network against potentially harmful bacteria, viruses and other organisms.
A healthy lifestyle helps one's immune system to be in the best shape possible to tackle pathogens, but it’s better to stop them entering the body in the first place.
The coronavirus pandemic has turned the world’s attention to the immune system, the body’s defence force against disease-causing bacteria, viruses and other organisms that we touch, ingest and inhale every day.
All living things are subject to attack from disease-causing agents. Even bacteria, so small that more than a million could fit on the head of a pin, have systems to defend against infection by viruses. This kind of protection gets more sophisticated as organisms become more complex.
Multicellular animals have dedicated cells or tissues to deal with the threat of infection. Some of these responses happen immediately so that an infecting agent can be quickly contained. Other responses are slower but are more tailored to the infecting agent. Collectively, these protections are known as the immune system. The human immune system is essential for our survival in a world full of potentially dangerous microbes, and serious impairment of even one arm of this system can predispose to severe, even life-threatening, infections.
Non-Specific (Innate) Immunity
The human immune system has two levels of immunity: specific and non-specific immunity. Through non-specific immunity, also called innate immunity, the human body protects itself against foreign material that is perceived to be harmful. Microbes as small as viruses and bacteria can be attacked, as can larger organisms such as worms. Collectively, these organisms are called pathogens when they cause disease in the host.
All animals have innate immune defenses against common pathogens. These first lines of defense include outer barriers like the skin and mucous membranes. When pathogens breach the outer barriers, for example through a cut in the skin or when inhaled into the lungs, they can cause serious harm.
Some white blood cells (phagocytes) fight pathogens that make it past outer defenses. A phagocyte surrounds a pathogen, takes it in, and neutralizes it.
Specific Immunity
While healthy phagocytes are critical to good health, they are unable to address certain infectious threats. Specific immunity is a complement to the function of phagocytes and other elements of the innate immune system.
In contrast to innate immunity, specific immunity allows for a targeted response against a specific pathogen. Only vertebrates have specific immune responses.
Two types of white blood cells called lymphocytes are vital to the specific immune response. Lymphocytes are produced in the bone marrow, and mature into one of several subtypes. The two most common are T cells and B cells.
An antigen is a foreign material that triggers a response from T and B cells. The human body has B and T cells specific to millions of different antigens. We usually think of antigens as part of microbes, but antigens can be present in other settings. For example, if a person received a blood transfusion that did not match his blood type, it could trigger reactions from T and B cells.
A useful way to think of T cells and B cells is as follows: B cells have one property that is essential. They can mature and differentiate into plasma cells that produce a protein called an antibody. This protein is specifically targeted to a particular antigen. However, B cells alone are not very good at making antibody and rely on T cells to provide a signal that they should begin the process of maturation. When a properly informed B cell recognizes the antigen it is coded to respond to, it divides and produces many plasma cells. The plasma cells then secrete large numbers of antibodies, which fight specific antigens circulating in the blood.