Math, asked by maradanalucky466, 2 months ago

Complete solution set of inequality
(x+2)(x+3)/(x-2)(x-3)< or = 1is​

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

 \frac{(x + 2)(x + 3)}{(x - 2)(x - 3)}  \leqslant 1 \\

 \implies \frac{(x + 2)(x + 3)}{(x - 2)(x - 3)} -  1 \leqslant 0 \\

 \implies \frac{(x^{2} + 5x + 6) }{( {x}^{2} - 5x + 6) } -  1 \leqslant 0 \\

 \implies \frac{(x^{2} + 5x + 6)  - ( {x}^{2}  - 5x + 6)}{( {x}^{2} - 5x + 6) } \leqslant 0 \\

 \implies \frac{(x^{2} + 5x + 6  - {x}^{2}   +  5x  - 6)}{( {x}^{2} - 5x + 6) } \leqslant 0 \\

 \implies \frac{10x}{ {x}^{2} - 5x + 6 } \leqslant 0 \\

 \implies \frac{10x}{ (x - 3)(x - 2)} \leqslant 0 \\

 x \in( -  \infty ,0 ] \cup(2,3)

Answered by rinayjainsl
0

Answer:

The solution of given inequality is

x\epsilon(-\infty,0]U(2,3)

Step-by-step explanation:

The given inequality is

 \frac{(x + 2)(x + 3)}{(x - 2)(x - 3)}  \leqslant 1

Subtracting 1 on both sides,we get

\frac{(x + 2)(x + 3)}{(x - 2)(x - 3)}   - 1\leqslant 1 - 1 \\  =  &gt;  \frac{ {x}^{2} + 5x + 6 }{ {x}^{2} - 5x + 6 }  - 1 \leqslant 0 \\  =  &gt;  \frac{10x}{ {x}^{2} - 5x + 6 }  \leqslant 0

After factorising the denominator,we can rewrite the above inequality as

 \frac{10x}{(x - 2)(x - 3)}  \leqslant 0

To solve this we shall use an concept as shown

 \frac{a}{b}  \leqslant 0 \\  =  &gt; a \leqslant 0 \: b  &gt; 0 \: or \\ a  \geqslant 0 \: b  &lt; 0

If we consider first condition,we get

x \leqslant 0 \\ (x - 2)(x - 3)  &gt; 0 =  &gt; x  &lt;  2 \: and \: x  &gt;  3

If we consider second condition,we get

x  \geqslant 0 \\ (x - 2)(x - 3)  &lt;  0 =  &gt; 2  &lt;  x  &lt; 3

Hence after obtaining intersection of the above inequalities we get the solution of inequality as

x\epsilon(-\infty,0]U(2,3)

#SPJ3

Similar questions