Math, asked by 16addisond, 4 months ago

complete table of values( x -3 -2 -1 0 1 2 3)
y=x^2 +x-4

Answers

Answered by KDouglas
2

FUNCTION

==============================

Solve:

 \implies \sf \large y =  {x}^{2}  + x - 4

 \large \begin{align}& \begin{array}{cccccccc} \sf x&-3&-2&-1&0& \\ \sf y & \orange{2}& \orange{ - 2} & \orange{ - 4} & \orange{ - 4} & \end{array} \\ &\begin{array}{cccccccc} \sf x & 1&2&3 \\ \sf y & \orange{ - 2} & \orange{0}  & \orange{8} \end{array} \end{align}

 \:

When x = -3

 \implies \sf \large y =  { - 3}^{2}  + ( - 3)- 4

 \implies \sf \large y =  9   - 3 - 4

 \implies \sf \large  \orange{y =  2}

 \:

When x = -2

 \implies \sf \large y =  { - 2}^{2}  + ( - 2)- 4

 \implies \sf \large y =  4   - 2- 4

 \implies \sf \large  \orange{y =  - 2}

 \:

When x = -1

 \implies \sf \large y =  { - 1}^{2}  + ( - 1)- 4

 \implies \sf \large y =  1 - 1- 4

 \implies \sf \large  \orange{y =   - 4}

 \:

When x = 0

 \implies \sf \large y =  {0}^{2}  + 0- 4

\implies \sf \large y =  {0}  + 0- 4

\implies \sf \large \orange{ y =   -  4}

 \:

When x = 1

\implies \sf \large y =  {1}^{2}  + 1- 4

\implies \sf \large y =  1  + 1- 4

\implies \sf \large  \orange{y =   - 2}

 \:

When x = 2

\implies \sf \large y =  {2}^{2}  + 2- 4

\implies \sf \large y = 4 + 0- 4

\implies \sf \large  \orange{y =  {0}}

 \:

When x = 3

\implies \sf \large y =  {3}^{2}  + 3- 4

\implies \sf \large y =  9 + 3- 4

\implies \sf \large  \orange{y =  8}

==============================

(ノ^_^)ノ

Similar questions