Math, asked by satishnikam7675, 3 months ago

complete the following activity to prove sin^theta / cos theta + cos theta = sec theta

Answers

Answered by Anonymous
3

SOLUTION :-

 \\   \\  \tt \: lhs =   \frac{ {sin}^{2}  \theta}{cos \theta}  + cos \theta \\  \\  \\  \sf \: cross \: multiplying....we \: get... \\  \\  \\   \implies\tt \:  \frac{ {sin}^{2} \theta +  {cos}^{2} \theta  }{cos \theta}  \\  \\  \\   \bigstar\boxed{ \bf \: {sin}^{2} \theta   +  {cos}^{2}  \theta= 1 } \\  \\  \\   \implies\tt \:  \frac{1}{cos \theta}  \\  \\   \\  \bigstar\boxed{ \bf \: \frac{1}{cos \theta} = sec \theta  } \\  \\  \\ \implies  \tt \:  sec \theta = rhs \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  \{verified \} \\  \\

MORE IDENTITIES :-

 \\   \bigstar \bf \:  \frac{1}{sin \theta}  = cosec \theta \\  \\  \\  \bigstar \bf \:  \frac{1}{tan \theta}  = cot \theta \\  \\  \\  \bigstar \bf \: 1 +  {tan}^{2}  \theta =  {sec}^{2} \theta  \\  \\  \\  \bigstar \bf \: 1 +  {cot}^{2}  \theta =  {cosec}^{2} \theta

Similar questions