Math, asked by sanjaikumar63322, 1 year ago

complete the following activity to prove that ​

Attachments:

Answers

Answered by Anonymous
9

may hopethis will help you

Attachments:
Answered by TanikaWaddle
8

proved

Step-by-step explanation:

given : \sqrt{\frac{1-\sin\theta}{1+\sin\theta}}= \sec\theta - \tan\theta

here ,

LHS

\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}

\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}= \sqrt{\frac{1-\sin\theta \times (1-\sin\theta)}{1+\sin\theta\times (1-\sin\theta)}}\\\\\sqrt{\frac{(1-\sin\theta)^2}{1-\sin^2 \theta}}= \frac{1-\sin\theta}{\sqrt{1-\sin^2 \theta}}\\\\\frac{1-\sin\theta}{\sqrt{cos^2 \theta}}= \frac{1-\sin\theta}{cos \theta}...(1)

RHS : \sec\theta - \tan\theta

\frac{1}{\cos\theta}- \frac{\sin\theta }{\cos\theta}

\frac{1-\sin\theta}{\cos\theta}..(2)

solved ..

#Learn more

https://brainly.in/question/4680129

Similar questions